МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель Министра
Д.Л. Пиневич
2014 г.
Регистранионный № 234-1273

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЙ МЕТОД ДИАГНОСТИКИ ПРИЖИВЛЕНИЯ И ОТТОРЖЕНИЯ ТРАНСПЛАНТАТА У ПАЦИЕНТОВ ПОСЛЕ АЛЛОГЕННОЙ ТРАНСПЛАНТАЦИИ ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК

Инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК:

Государственное учреждение «Республиканский научно-практический центр детской онкологии, гематологии и иммунологии»

АВТОРЫ:

д.м.н., профессор, член-корреспондент НАН Беларуси Алейникова О.В., к.б.н. Савицкая Т.В., Марейко Ю.Е., Лавриненко В.А.

Минск, 2013

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Д.Л. Пиневич
06.03.2013
Регистрационный № 234-1213

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ МЕТОД ДИАГНОСТИКИ ПРИЖИВЛЕНИЯ И ОТТОРЖЕНИЯ ТРАНСПЛАНТАТА У ПАЦИЕНТОВ ПОСЛЕ АЛЛОГЕННОЙ ТРАНСПЛАНТАЦИИ ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: ГУ «Республиканский научно-практический центр детской онкологии, гематологии и иммунологии»

АВТОРЫ: д-р мед. наук, проф., чл.-корр. НАН Беларуси О.В. Алейникова, канд. биол. наук Т.В. Савицкая, Ю.Е. Марейко, В.А. Лавриненко

В настоящей инструкции по применению (далее — инструкция) представлен метод диагностики приживления и отторжения трансплантата, основанный на исследовании донорского химеризма (ДХ) полимеразной цепной реакцией (ПЦР) с последующим капиллярным электрофорезом и фрагментным анализом для определения STR-мишеней и количественной полимеразной цепной реакцией для выявления InDel-мишеней у реципиентов после аллогенной трансплантации гемопоэтических стволовых клеток (ТГСК). Результаты диагностики приживления и отторжения трансплантата на основе данного метода позволят проводить своевременную и адекватную терапию, контролировать ее эффективность у 100% реципиентов на всех этапах после операции, что улучшит исход заболевания у пациентов после аллогенной трансплантации гемопоэтических стволовых клеток.

Настоящая инструкция предназначена для врачей-трансплантологов, врачей-гематологов, врачей-иммунологов.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

<u>Выделение</u> <u>ДНК</u>: спектрофотометр; вортекс; термоблок; высокоскоростная центрифуга, морозильник -20° C; набор пипеток с переменными объемами от 0,5 мкл до 1 мл; пробирки объемом 0,5–1,5 мл; набор для выделения ДНК; вода для ПЦР.

Полимеразная цепная реакция с последующим капиллярным электрофорезом и фрагментным анализом для определения STR-мишеней: шкаф для ПЦР; термоциклер для ПЦР; набор для амплификации STR-мишеней; морозильник -20°С; морозильник -70°С; набор пипеток с переменными объемами от 0,5 мкл до 1 мл; пробирки объемом 0,2; вода для ПЦР; праймеры и зонды к STR-мишеням; генетический анализатор с программным обеспечением для проведения капиллярного электрофореза и фрагментного анализа; 96-луночные плашки, септа, полимер, формамид, буфер для генетического анализатора.

Количественная полимеразная цепная реакция для определения InDel-мишеней: шкаф для ПЦР; термоциклер для ПЦР в реальном времени; морозильник -20°С; морозильник -70°С; набор пипеток с переменными объемами от 0,5 мкл до 1 мл; пробирки объемом 0,2; оптически прозрачные планшеты и крышки для количественной ПЦР; вода для ПЦР; набор смеси для количественной ПЦР в реальном времени; праймеры и зонды к InDel-мишеням.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Аллогенная трансплантация гемопоэтических стволовых клеток

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

Принцип метода основан на количественной оценке ДНК клеток донора у реципиента после аллогенной ТГСК по отношению к количеству остаточной ДНК реципиента в образцах костного мозга и периферической крови.

Для различия ДНК донора и реципиента используют амплификацию гипервариабельных участков генома человека, которые представляют собой

высокополиморфные образования, состоящие, например, из различного числа попарно повторяющихся последовательностей нуклеотидов (STR-мишени, short tandem repeat) или биаллельных инсерций/делеций участков ДНК (InDel-мишени, insertion/deletion).

Для амплификации STR-мишеней применяют метод полимеразной цепной реакции, в которой используют меченные различными флуорохромами праймеры, фланкирующие интересующий локус. В ПЦР амплифицируется целый аллель, поэтому размер продукта определяется длиной и количеством повторов, для разделения и детекции которых используют программное обеспечение для фрагментного анализа после проведения капиллярного электрофореза. Размер каждого аллеля (в парах оснований) и количество ДНК оценивают исходя из показателей относительной флуоресценции и времени детекции сигнала.

Для амплификации InDel-мишеней применяют полимеразную цепную реакцию в реальном времени. Особенностью этого метода является возможность количественного измерения ПЦР-продукта во время экспоненциальной фазы процесса амплификации. Для этого используют детекцию флуоресцентных сигналов во время каждого цикла ПЦР, возникающую при гидролизе меченной флуорохромом пробы (ТаqMan пробы).

1. Подготовка образцов

Мононуклеарные клетки выделяют из периферической крови и костного мозга на градиенте плотности 1,077 с последующей отмывкой в фосфатно-солевом буфере с рН 7,4. Выделение ДНК из 5 млн клеток проводят с помощью коммерческого набора. Количество ДНК оценивают спектрофотометрически. После определения количества ДНК разводят до конечной концентрации 1 нг/мкл. Хранят образцы ДНК при -20°C.

2. Метод полимеразной цепной реакции с последующим капиллярным электрофорезом и фрагментным анализом для определения STR-мишеней

амплификации STR-мишеней используют коммерческий 10 STR-локусам и содержащий смесь праймеров к локусу амелогенина мультиплексной ПЦР, которые коамплифицируются одной использованием праймеров, меченных различными флуорохромами. ПЦР выполняют в конечном объеме 17 мкл в составе: 8,4 мкл смеси для реакции, 0,4 мкл полимеразы для горячего старта с концентрацией 5 Ед/мкл, 0,44 мкл смеси праймеров и 4 нг исследуемой ДНК. Амплификацию проводят на термоциклире при следующих условиях: 95°C 11 мин для активации полимеразы, 28 циклов с денатурацией при 94°С 1 мин, отжигом при 59°С 1 мин и элонгацией при 72°С 1 мин, шаг финальной элонгации — 60°C — 45 мин.

Разделение продуктов ПЦР и детекцию флуоресценции проводят с помощью капиллярного электрофореза на генетическом анализаторе согласно параметрам программного обеспечения. Для этого в лунки планшета вносят 9,25 мкл формамида, 0,25 мкл стандарта молекулярных весов (длиной 500 пар оснований) и 0,5 мкл продукта ПЦР. Образцы денатурируют при 95°C 3 мин, охлаждают на льду 3 мин и загружают в прибор.

После капиллярного электрофореза проводят идентификацию аллелей с использованием оригинального программного обеспечения. При несовпадении аллелей у пары донор-реципиент их рассматривают как информативные и

используют в дальнейшем для подсчета смешанного химеризма в посттрансплантационных образцах. Для определения информативных аллелей используют образцы донора и реципиента, взятый до проведения ТГСК.

Рассчитывают донорский химеризм в посттрансплантационном образце как соотношение сигналов флуоресценции информативных аллелей донора и реципиента по относительной высоте пиков по формуле:

 $ДХ\% = (\Sigma \ ДНК \ донора) / \Sigma \ общей \ ДНК \ в \ локусе \times 100\%.$

3. Метод количественной ПЦР для определения InDel-мишеней

Принцип выполнения методики количественной ПЦР для определения InDelмишеней заключается в следующем:

- в каждом образце донора и реципиента мишенями являются ДНК исследуемых локусов, а референс-геном ДНК гена альбумина ABL (albumin).
 - мишень и референс-ген амплифицируют в отдельных пробирках в дублях;
- первоначально донора и реципиента генотипируют по всем аллельспецифическим маркерам. Аллели учитывают как позитивные, если значение Сt (пороговый цикл) находится в пределах 20–26, и негативные, если значение Сt превышает 40 или отсутствует амплификация. Аллели считают информативными, если они являются позитивными для реципиента и негативными для донора или наоборот;
- для расчета эффективности реакции используют метод относительных стандартных кривых. Стандартные кривые в каждой реакции для информативных аллелей строят на основании серии разведений (100, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6) ДНК донора в ДНК реципиента и наоборот.

Стандартные кривые оценивают математически с использованием программного обеспечения — термоциклер для ПЦР в реальном времени по следующим показателям: коэффициенту корреляции (Correlation Coefficient), который отражает корреляцию показателя Сt разных разведений и должен быть выше 0,990; эффективности ПЦР (PCR Efficiency), которая должна быть в пределах 90-110%; наклону стандартной кривой (Slope), который может варьировать в пределах - 3,0-3,6.

В исследовании используют следующие праймеры для 18 локусов:

- локуса S01a прямой 5'-GGTACCGGGTCTCCACATGA-3', обратный 5'-GGGAAAGTCACTCACCCAAGG-3', пробу: Fam-CTGGGCCAGAATCTTGGTCCTCACA-BHQ1;
- локуса S02 прямой 5'-GCTTCTCTGGTTGGAGTCACG-3', обратный 5'-GCTTGCTGGCGGACCCT-3', пробу: Fam-CTGCACCACAAATCATCCCCGTG-BHQ1;
- локуса S03 прямой 5'-CTTTTGCTTTCTGTTTCTTAAGGGC-3', обратный 5'-TCAATCTTTGGGCAGGTTGAA-3', пробу: Fam-CATACGTGCACAGGGTCCCCGAGT-BHQ1;
- локуса S04a прямой 5'-CTGGTGCCCACAGTTACGCT-3', обратный 5'-AAGGATGCGTGACTGCTATGG-3', пробу: Fam-TCCTGGCAGTGTCCCTTCAGAA-BHQ1;
 - локуса S04б прямой 5'-CTGGTGCCCACAGTTACGCT-3', обратный 5'-

AGGATGCGTGACTGCTCCTC-3', пробу: Fam-TCCTGGCAGTGTGGTCCCTTCAGAA-BHQ1; - локуса S05a прямой 5'-AAAGTAGACACGGCCAGACTTAGG-3', обратный 5'-CATCCCCACATACGGAAAAGA-3', пробу: Fam-CCCTGGACACTGAAAACAGGCAATCCT-BHQ1; - локуса S05б прямой 5'-AGTTAAAGTAGACACGGCCTCCC-3', обратный 5'-CATCCCCACATACGGAAAAGA-3', пробу: Fam-CCCTGGACACTGAAAACAGGCAATCCT-BHQ1; - локуса S06 прямой 5'-CAGTCACCCGTGAAGTCCT-3', обратный 5'-TTTCCCCCATCTGCCTATTG-3', пробу: Fam-CCCATCCATCTTCCCTACCAGACCAGG-BHQ1; - локуса S07a прямой 5'-TGGTATTGGCTTTAAAATACTGGG-3', обратный 5'-TGTACCCAAAACTCAGCTGCA-3', пробу: Fam-TCCTCACTTCTCCACCCCTAGTTAAACAG-BHQ1; - локуса S076 прямой 5'-GGTATTGGCTTTAAAATACTCAACC-3', обратный 5'-CAGCTGCAACAGTTATCAACGTT-3', пробу: Fam-TCCTCACTTCTCCACCCCTAGTTAAACAG-BHQ1; - локуса S08a прямой 5'-CTGGATGCCTCACTGATCCA-3', обратный 5'-TGGGAAGGATGCATATGATCTG-3', пробу: Fam-CTCCCAACCCCCATTTCTGCCTG-BHQ1; - локуса S08б прямой 5'-GCTGGATGCCTCACTGATGTT-3', обратный 5'-TGGGAAGGATGCATATGATCTG-3', пробу: Fam-CTCCCAACCCCCATTTCTGCCTG-BHQ1; - локуса S096 прямой 5'-GGGCACCCGTGTGAGTTTT-3', обратный 5'-CAGCTTGTCTGCTTTCTGCTG-3', пробу: Fam-TGGAGGATTTCTCCCCTGCTTCAGACAG-BHQ1; 5'-GCCACAAGAGACTCAG-3', - локуса S10a прямой обратный 5'-TGGCTTCCTTGAGGTGGAAT-3', пробу: Fam-CAGTGTCCCACTCAAGTACTCCTTTGGA-BHQ1; - локуса S10б прямой 5'-TTAGAGCCACAAGAGACAACCAG-3', обратный 5'-TGGCTTCCTTGAGGTGGAAT-3', пробу: Fam-CAGTGTCCCACTCAAGTACTCCTTTGGA-BHQ1; 5'-CCCTGGATCGCCGTGAA-3', 5'-S116 обратный - локуса прямой CCAGCATGCACCTGACTAACA-3', пробу: Fam-CAAGGCTTCCTCAATTCTCCACCCTTCC-BHQ1; - локуса ACE1428 прямой 5'-CCATTTCTCTAGACCTGCC-3', обратный 5'-GCCCTTAGCTCACCTCTGCTT-3', пробу: Fam-TCACTTTTATGTGGTTTCGCCAATTTTATTC-BHQ1; - локуса GST194 прямой 5'-GGAGAAGATTCGTGTGGACA-3', обратный 5'-CTGGATTGTAGCAGATCATAC-3', пробу: Fam-TTTGGAGAACCAGACCATGGACAAC-BHQ1; прямой 5'-AGGGTAAAGAGTCGTCGATATGCT-3', - референс-гена ALB 5'-CAATCTCAACCCACTGTCAGCTA-3', пробу: CAAACGCATCCATTCTACCAACTTGAGCAT-BHQ1.

Уровень амплификации определяют с использованием прибора и программного

обеспечения системы с детекцией в режиме реального времени. Реакцию проводят в

объеме 20 мкл: 10 мкл смеси для количественной ПЦР, 100 nM каждого праймера, 200 nM ТаqМап пробы, 120 нг ДНК. Для ALB — 300 nM каждого праймера, 200 nM ТаqМап пробы. Условия ПЦР: 2 мин при 50°C, 10 мин при 95°C и 40 циклов амплификации (95°C — 45 с и 62°C — 60 с). Все образцы исследуют в дубликатах. ПЦР проводят как однокомпонентную реакцию (в каждой пробирке праймеры и зонд к одной мишени).

Аллели считают информативными, если они являются позитивным для реципиента и негативным для донора или наоборот. Нормализуют количество исследуемых последовательностей ДНК в образце следующим образом:

$$\Delta Ct \mathcal{U}_H = \mathcal{U}_X - ALB_X$$

где Δ CtOн — нормализованное значение Сt исследуемой последовательности ДНК в образце;

Ох — значение Ст исследуемой последовательности ДНК в образце;

ALBx — значение Ct референс-гена ALB в образце.

Для подсчета уровня донорского химеризма используют следующую формулу:

$$ДX\% = (1 + E) - (\Delta CtИH - \Delta CtK) \times 100\%,$$

где ДХ% — значение донорского химеризма в процентах;

 Δ СtИн — нормализованное значение Сt исследуемой последовательности ДНК в образце;

 Δ CtK — значение Δ Ct в калибраторе (в образце до трансплантации);

Е — эффективность амплификации исследуемой последовательности ДНК.

При уровне донорского химеризма более 95% количество остаточных ДНК мишеней реципиента определяют по 1–2 информативным аллелям реципиента, а уровень химеризма вычисляют по формуле: ДХ% = 100% – % химеры реципиента.

Интерпретация результатов подсчета уровня донорского химеризма

При диагностике уровня химеризма: более 97,5% — полный донорский химеризм (приживление трансплантата), менее 2,5% — полное отторжение трансплантата, 2,5—97,5% — смешанный донорский химеризм. Увеличение химеризма на $\geq 5\%$ говорит о повышении смешанного химеризма; уменьшение на $\geq 5\%$ — о снижении смешанного донорского химеризма.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

Большую погрешность в измерение уровня химеризма могут вносить так называемые «stutter» пики, которые возникают в результате «скольжения» полимеразы в процессе амплификации на одну повторяющуюся единицу STR. При использовании тетрануклеотидных STR они появляются на 4 нуклеотида раньше амплифицируемого аллеля на электрофореграмме. Эти «stutter»-пики могут вносить 5—15% вклад в пики, перекрывающиеся с ними по размеру, а также симулировать картину смешанного химеризма при его низком уровне, если информативный аллель

реципиента комигрирует со «stutter»-пиком донорского аллеля. «Stutter»-подобные пики могут появляться также после главного пика. Такие локусы должны быть исключены из анализа, особенно когда четко определено наличие низкого уровня химеризма в других локусах. Эти особенности следует учитывать при подсчете уровня химеризма, особенно при его очень низких значениях (стремящихся к 0% ДХ) или очень высоких (стремящихся к 100% ДХ).

Разная эффективность амплификации аллелей в мультиплексной ПЦР или аллельный дисбаланс являются общим источником вариации, приводящей к \leq 15% разнице в пределах пары аллелей донора или реципиента в 70–100% случаев в зависимости от маркера.

Также погрешности существует при использовании метода количественной ПЦР для определения InDel-мишеней. При этой ПЦР разница в условиях амплификации между дублями влияет на точность определения значения химеризма: допускаемая погрешности измерения порогового значения — Ct±0,5 между дублями, что соответствует вариации количества ДНК до 50% (коэффициент вариации парных измерений = 0–50%), при низких значениях химеризма эта погрешность незначительна, а при высоких не допустима. Для сравнения 100% химеризм при измерении может давать значения между 75 и 150%, что не пригодно для измерения химеризма, а при значении 1% может давать значения между 0,75 и 1,5%, что вполне допустимо.

Наиболее надежные результаты получают с использованием метода с STR-мишенями с уровнем химеризма от 3 до 97% ДХ. При этом главное достоинство метода на основе InDel-мишеней заключается в более высокой чувствительности, что делает возможным мониторинг химеризма при его низких и высоких значениях (менее 1% и более 97%).