МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ Первый заместитель министра В.А. Ходжаев 29.12.2010 г. Регистрационный № 173-1110

АВТОМАТИЗИРОВАННЫЙ МЕТОД ЭКСПРЕСС-ДИАГНОСТИКИ ИДИОПАТИЧЕСКОГО СКОЛИОЗА ПРИ ОРТОДОНТИЧЕСКОМ ОБСЛЕДОВАНИИ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ:

УО «Белорусский государственный медицинский университет» ГУ «Республиканский научно-практический центр травматологии и ортопедии»

АВТОРЫ:

д-р. мед. наук, проф. И.В. Токаревич А.О. Сакадынец канд. мед. наук Д.К. Тесаков

Минск 2010

ОБЛАСТЬ ПРИМЕНЕНИЯ

Стоматология, ортодонтия, ортопедия.

Предлагаемый метод диагностики разработан для применения врачамиортодонтами с целью выявления идиопатического сколиоза (ИС) у пациентов с зубочелюстными аномалиями. Представляемый метод диагностики ИС, как заболевания всего организма на почве дисплазии обмена и формирования соединительной ткани, основан на автоматизированной оценке геометрических особенностей состояния зубных рядов, имеющих определенную специфику при данной патологии.

Применение метода в клинической практике позволяет повысить уровень выявляемости ИС при стоматологических профилактических осмотрах детей и подростков, а также определения особенностей ортодонтического статуса при уже диагностированной деформации позвоночника, как ведущем ортопедическом симптомокомплексе, что в целом способствует рациональному и более эффективному лечению пациентов.

ПРЕДПОЛАГАЕМЫЙ УРОВЕНЬ ВНЕДРЕНИЯ

Ортодонтические центры, отделения и кабинеты; ортопедические центры, отделения и кабинеты.

НОВИЗНА МЕТОДА

Предложенный автоматизированный метод наряду с клиническим и рентгенологическим обследованием предоставляет возможность определить формирования зубочелюстной нарушение системы, как одного составляющих симптомокомплексов при ИС. Анализ геометрических особенностей зубных рядов при ИС позволяет с вероятностью более 85% специфической определить наличие сопутствующей трехплоскостной деформации позвоночника c ee характеристиками, включающими анатомическую локализацию и ее выраженность у конкретного пациента.

Представляемый метод основан на сравнительном анализе параметров, характеризующих нарушения симметричности формирования зубных рядов.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ, МАТЕРИАЛОВ И ИНСТРУМЕНТАРИЯ:

- 1. Стоматологическое кресло для осмотра пациента.
- 2. Оттискная масса для получения слепков зубных рядов.
- 3. Гипс для изготовления диагностических моделей зубных рядов пациентов.
 - 4. Цифровой фотоаппарат для получения снимков зубных рядов.
- 5. Штатив для обеспечения стандартизированных условий фотосъемки изготовленных диагностических моделей зубных рядов (рекомендуется техническое решение в варианте патента на полезную модель $N \ge 6526$ от 30.11.2009).
- 6. Персональный компьютер с минимальными системными требованиями процессор Intel Pentium 100; оперативная память 16 МВ; видео

SVGA 640x480 256 Color; свободное место на жестком диске типа «винчестер» около 3 MB.

7. Разработанная программа (удостоверение на рационализаторское предложение № 1721 от 11.10.2010 из УО БГМУ) для обработки и анализа цифровых фотографий диагностических моделей зубных рядов.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Выявление возможного наличия зубочелюстных аномалий, характерных при ИС.

ПРОТИВОПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Не выявлены.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА ДИАГНОСТИКИ

- **1. Клинический этап:** получение оттисков, изготовление диагностических гипсовых моделей верхнего и нижнего зубных рядов.
- **2. Лабораторный этап:** для получения цифрового изображения диагностических моделей зубных рядов следует поместить изготовленную модель на рабочую пластину штатива, а цифровой фотоаппарат на пластинуфиксатор, что представлено на рис. 1.

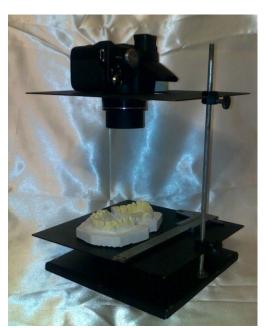


Рис.1. Расположение фотоаппарата для получения изображения диагностических моделей зубных рядов

После фотографирования модели зубных рядов цифровой файл в JPG формате загружается в персональный компьютер с последующим анализом разработанной программой.

3. Разметка диагностических моделей зубных рядов: на цифровой фотографии с помощью манипулятора «мышь» отмечаются точки, соответствующие верхушкам мезиально-щечных бугров моляров,

вестибулярных бугров премоляров, бугров клыков и серединам режущих краев резцов как на верхнем, так и на нижнем зубных рядах. При этом при нанесении разметки на верхний зубной ряд необходимо в программной графе «Location» выбрать «Maxillary Arch», при работе на нижней зубной дуге — «Mandibular Arch». Между одноименными зубами с левой и правой сторон автоматически строятся прямые. Затем дается команда «Median Palatine Suture» и отмечаются точки, соответствующие кривой срединного небного шва. Полученная на мониторе картина иллюстрирует геометрические особенности зубных рядов анализируемой модели (рис. 2).

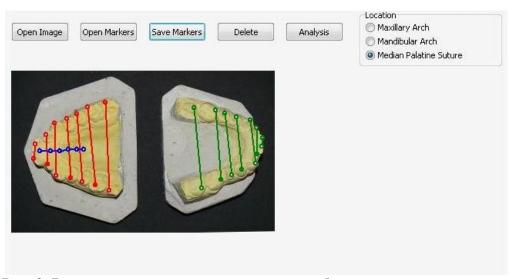


Рис. 2. Разметка диагностической модели зубных рядов у пациентов с зубочелюстными аномалиями

Оценка состояния симметричности формирования рядов: проводят на основании анализа геометрии строения зубных рядов по 17 параметрам: F₁ — угол между осью небного шва и осью верхнего зубного ряда; F_2 — среднее отклонение центров отрезков от оси верхнего зубного ряда; F₃ — среднеквадратичное отклонение центров отрезков от оси верхнего зубного ряда; F_4 средний угол отклонения отрезков верхнего зубного ряда от перпендикуляра; F_5 — среднеквадратичный угол отклонения отрезков верхнего зубного ряда от перпендикуляра; F_6 — взвешенное отклонениями среднее координат проекции центров отрезков на ось верхнего зубного ряда; F_7 взвешенное квадратами отклонений среднее координат проекции центров отрезков на ось верхнего зубного ряда; F₈ — взвешенное отклонениями углов среднее координат проекции центров отрезков на ось верхнего зубного ряда; F₉ — взвешенное квадратами отклонений углов среднее координат проекции центров отрезков на ось верхнего зубного ряда; параметры $F_{10}...F_{17}$ нижнего зубного ряда вычисляются аналогичным способом, как и параметры $F_2...F_9$ верхнего зубного ряда. После окончания этапа разметки зубных рядов активируют команду «Analysis», при этом на экране появляется таблица с математическими значениями, характеризующими параметры асимметричности (рис. 3).

	I	II	III-IV	Chest	Chst-Lmbr	Lumbar	5	Left	Right	Healthy		
1: 0.1100	0.17	0.47	0.46	0.14	0.32	0.49	0.27	0.52	0.23	0.25	V	Method
2: 0.0930	0.12	0.52	0.12	0.07	0.14	0.39	0.62	0.38	0.10	0.09	V	Soft
2; 0.0930 3; 0.0120	0.10	0.85	0.15	0.07	0.20	0.46	0.93	0.42	0.13	0.22		
4: -0.1900	0.01	0.04	0.03	0.01	0.03	0.01	0.03	0.02	0.02	0.03	7	3 Sigma
5: 0.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	V	
	0.99	1.00	0.98	0.96	0.98	0.90	0.96	0.98	0.99	1.00	7	(2.5 Sigma
: -0,2800 : -0,2200	0.91	0.98	0.95	0.82	0.97	0.99	0.97	0.97	0.92	0.94		
3: -0.4300	1.00	0.99	1.00	0.95	0.99	0.97	0.96	0.98	1.00	0.99	V	© 2 Sigma
9: -0.4100	0.99	1.00	0.96	0.90	0.97	0.95	1.00	1.00	0.99	0.87		0
10: -0.0890	0.18	0.05	0.03	0.06	0.03	0.25	0.09	0.15	0.07	0,12	7	(n) 1.5 Sigma
11: 0.0120	0.12	0.07	0.08	0.08	0.03	0.19	0.08	0.09	0.08	0.18	V	0
12: 0.1200	0.71	0.48	0.39	0.45	0.66	0.60	0.35	0.40	0.66	0.41	V	
13: 0.0140	0.99	0.84	0.97	0.83	0.99	0.98	0.60	0.71	0.98	0.95	V	0
14: 0.3800	1.00	0.99	0.99	0.95	0.96	0.90	1.00	1.00	1.00	0.98	V	
15: 0.2900	0.96	0.83	0.99	0.89	0.99	0.95	0.82	0.98	0.95	0.96	V	
16: 0.5300	0.99	1.00	0.96	0.98	0.99	1.00	0.85	0.95	0.98	1.00	V	
17: 0.4800	0.63	0.61	0.35	0.43	0.49	0.85	0.33	0.78	0.52	0.61	V	
OTAL:	0.58	0.63	0.55	0.51	0.57	0.64	0.58	0.61	0.57	0.57		
Euclid	0.41	0.47	0.39	0.36	0.40	0.50	0.44	0.46	0.40	0.41		
Correlation	0.59	0.74	0.71	0.29	0.68	0.78	0.63	0.64	0.53	0.73		

Рис. 3. Величины параметров асимметрии зубных рядов у пациентов с зубочелюстными аномалиями

Ввиду того, что каждый из 17 изучаемых параметров подробно геометрически описывает присущую ему область зубных рядов, необходимо использовать совокупность всех параметров для уточнения деформации позвоночника у обследуемого пациента. Оценки значений критериев (средний балл, евклидово расстояние или корреляцию) обследуемого пациента сравнивают с выделенными группами ортопедической патологии и критериями группы контроля (пациенты без ортопедической патологии), для которой данные показатели максимальны по значению. Значения критерия в выделенных группах интерпретируется как указывающие на вероятное наличие у пациента деформации позвоночника, что в последующем уточняется путем проведения соответствующего клинико-рентгенологического ортопедического исследования.

Если совокупность параметров у обследованного пациента не является максимальным значением в колонке «healthy», то необходимо определить максимальные значения критериев в 1–3, 4–6, 8–9 колонках программы, которые соответствуют группам ИС с учетом выраженности деформации позвоночника (указано в колонках выделенными степенями от I до IV), анатомической искривления стороны локализации ДУГ И поражения позвоночника (указано в соответствующих колонках), что проиллюстрировано примером на рис. 4, где цветовым индикатором выделены максимальные значения параметров по вычисляемой разновидности стороны поражения, локализации деформации в позвоночнике и ее выраженности.

	1	II	III-IV	Chest	Chst-Lmbr	Lumbar	5	Left	Right	Healthy		
: 0.0100	0.98	0.99	0.83	0.96	1.00	0.76	0.99	0.98	0.96	0.99	V	Method
: 0.0570	0.62	0.93	0.79	0.56	0.70	0.92	0.96	0.87	0.63	0.44	V	Soft
: 0.0042	0.92	0.99	0.97	0.89	0.96	0.99	0.98	1.00	0.94	0.95	V	
: -0.0190	0.98	0.97	0.81	0.99	0.97	0.87	0.96	0.96	0.97	0.95	V	3 Sigma
: 0.0018	0.88	0.81	0.82	0.90	0.84	0.80	0.77	0.90	0.85	0.90	7	
-0.3000	0.99	1.00	0.94	0.98	0.98	0.78	0.91	0.99	0.99	1.00	V	2.5 Sigma
-0.2800	1.00	0.89	0.93	1.00	0.98	0.64	0.87	0.88	1.00	0.98	V	
-1.0000	0.93	0.22	0.72	0.41	0.97	0.46	0.77	0.46	0.90	0.61	V	2 Sigma
-0.6500	0.42	0.35	0.24	0.21	0.13	0.77	0.45	0.26	0.38	0.14	V	
0: -0.0230	1.00	0.97	0.83	0.99	1.00	0.99	0.93	0.99	1.00	0.93	V	€ 1.5 Sigma
1: 0.0012	0.92	0.98	0.98	0.98	0.98	0.86	0.97	0.93	0.97	0.97	7	
2: 0.0200	0.93	0.98	0.98	0.98	0.95	0.99	1.00	0.99	0.95	0.99	V	
3: 0.0024	0.75	0.83	0.81	0.85	0.77	0.72	0.73	0.77	0.78	0.88	V	
4: 0.2500	1.00	1.00	0.95	0.90	1.00	1.00	1.00	0.76	0.99	1.00	V	
5: 0.2300	0.73	0.45	0.89	0.63	0.78	0.70	0.38	0.79	0.69	0.76	V	
6: 0.1300	1.00	0.97	0.99	0.99	0.99	0.99	0.05	0.75	1.00	0.75	V	
7: 0.6100	0.95	0.96	0.83	0.83	0.92	1.00	0.78	1.00	0.89	0.94	V	
DTAL:	0.88	0.84	0.84	0.83	0.88	0.84	0.79	0.84	0.87	0.83		
Euclid	0.80	0.71	0.77	0.71	0.76	0.78	0.67	0.75	0.79	0.72		
Correlation	0.55	0.51	0.51	0.30	0.55	0.53	0.44	0.38	0.51	0.49		

Рис. 4. Пациентка К., 1991 г.р., дистальный, глубокий прикус, сагиттальная щель 4 мм, укорочение нижнего зубного ряда, тесное положение нижних резцов, поворот по оси зубов 14, 15, 16, 35 с правосторонней грудопоясничной сколитической деформацией I степени тяжести

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ И ПУТИ ИХ УСТРАНЕНИЯ:

При правильном методологическом использовании технологии проведения фотографирования и разметки зубных рядов ошибки в работе программы по вычислению исключены.