МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДА	Ю
Первый заместитель министра	
	Д.Л. Пиневич
28.11.2012	
Регистрацион	нный № 136-1211

ОЦЕНКА ВЛИЯНИЯ ПРОТИВООПУХОЛЕВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ НА ОПУХОЛЕВЫЕ КЛЕТКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ В ПЕРВИЧНОЙ КУЛЬТУРЕ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: ГНУ «Институт биофизики и клеточной инженерии Национальной академии наук Беларуси», ГУ «Республиканский научнопрактический центр онкологии и медицинской радиологии им. Н.Н. Александрова»

АВТОРЫ: канд. хим. наук М.А. Мартынова, канд. биол. наук Н.А. Шуканова, канд. биол. наук С.В. Пинчук, И.М. Бушмакина, М.М. Молчан, д-р мед. наук, проф. Л.А. Путырский, канд. мед. наук Ю.Л. Путырский, Н.А. Козловская

Инструкция по применению (далее — инструкция) разработана с целью определения чувствительности к противоопухолевым лекарственным средствам клеток рака молочной железы (РМЖ) в клеточной тест-системе (первичной культуре) опухолевых клеток.

Инструкция предназначена для врачей-онкологов и врачей других специальностей, оказывающих медицинскую помощь пациенткам, страдающим РМЖ.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

Оборудование:

- 1. Комплект хирургического инструментария, необходимого для выполнения операции по забору опухолевой ткани или трепанобиопсии.
 - $2. CO_2$ -инкубатор.
 - 3. Ламинарный шкаф.
 - 4. Термостат.
 - 5. Центрифуга лабораторная.
 - 6. Фотометр.
 - 7. Шприцы различного объема.
 - 8. Автоматические пипетки-дозаторы.

Лекарственные средства, реактивы:

- 1. Противоопухолевые лекарственные средства:
- доксорубицин;
- циклофосфан;
- фторурацил;
- метотрексат;
- паклитаксел;
- любое лекарственное средство, которое планируется использовать для химиотерапии.
 - 2. Среда RPMI 1640.
 - 3. L-глютамин.
 - 4. Эмбриональная телячья сыворотка.
 - 5. Гентамицина сульфат.
 - 6. Ацетилтиохолин.
 - 7. 5,5'-Дитиобис (2-нитробензойная кислота) реактив Эллмана.
 - 8. Сода кальцинированная (Na_2CO_3).
 - 9. Гидроксид натрия (NaOH).
 - 10. Калий-натрий-виннокислый.
 - 11. Додецилсульфат натрия.
 - 12. Сульфат меди (CuSO₄·5H₂O).
 - 13. Хлорид натрия (NaCl).
 - 14. Динатриевый гидрофосфат (Na₂HPO₄).
 - 15. Дигидрофосфат натрия (NaH₂PO₄).

Необходимые условия культивирования:

1. Стерильность.

- 2. Температура 37°С.
- 3. Влажная атмосфера при постоянном давлении 5% СО2.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Оценка влияния противоопухолевых лекарственных средств на активность ацетилхолинэстеразы (АХЭ) в первичной культуре клеток РМЖ.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

Этап культивирования клеток РМЖ с противоопухолевыми лекарственными средствами в первичной культуре

В образцы первичной культуры РМЖ добавляют лекарственное средство или смесь лекарственных средств и помещают в CO_2 -инкубатор на 48-72 ч. Концентрацию лекарственных средств в первичной культуре клеток РМЖ рассчитывают с учетом клинически значимых доз, применяемых в онкологической практике. В условиях *in vitro* для доксорубицина концентрация составляет 20 мкг/мл; для циклофосфана — 240 мкг/мл; для фторурацила — 240 мкг/мл; для метотрексата — 16 мкг/мл и паклитаксела — 70 мкг/мл. После окончания культивирования образцы разбавляют в 3 раза забуференным фосфатами физиологическим раствором (3ФР, рH = 7,4), центрифугируют 7 мин при 400 g на лабораторной центрифуге, клеточный осадок ресуспендируют в 3 мл 3ФР и трехкратно отмывают в 3ФР от среды культивирования. После последнего центрифугирования осадок ресуспендируют в 0,5-2 мл 3ФР.

Этап определения активности ацетилхолинэстеразы в опухолевых клетках РМЖ

Суспензию клеток разводят в несколько раз так, чтобы величина оптической плотности не превышала 0,3-0,5 отн. ед. при $\lambda=412$ нм. К 2 мл клеточной суспензии добавляют 30 мкл реактива Эллмана (10 млмоль/л) и инкубируют 30 мин при 37° С, затем добавляют 100 мкл ацетилтиохолина (7,5 млмоль/л) и измеряют оптическую плотность на фотометре сразу после добавления субстрата и через каждые 10 мин инкубации в водяном термостате при 37° С. Скорость увеличения оптической плотности соответствует скорости гидролиза ацетилтиохолина, а следовательно, активности ацетилхолинэстеразы (40). Активность 400 пересчитывают на концентрацию белка в суспензии. Концентрацию белка в суспензии можно определять любым стандартным методом, включая метод Лоури.

Этап оценки чувствительности опухолевых клеток к противоопухолевым лекарственным средствам в первичной культуре

Чувствительность или резистентность опухолевых клеток РМЖ *in vitro* к используемым лекарственным средствам оценивают путем сравнения активности АХЭ опухолевых клеток после культивирования в присутствии лекарственных средств $(A_{\iota\iota})$ с активностью АХЭ таких же клеток после культивирования без лекарственных средств $(A_{\iota\iota})$ с оптической средст

плотности $\Delta D = D_t - D_0$, которое происходит за время t в результате гидролиза ацетилтиохолина АХЭ опухолевых клеток, предварительно культивируемых без или в присутствии лекарственных средств, пересчитывают по калибровочным кривым в нМ гидролизованного субстрата в 1 мин на количество белка в 1 мл клеточной суспензии $[C_6]$. Так как измерение активности AXЭ проводится в одинаковом временном интервале для A_{κ} и A_{μ} и оптическая плотность суспензии клеток линейно зависит от количества гидролизованного субстрата, процедуру пересчета активности фермента в абсолютных единицах (нмоль/мг белка в 1 мин) можно упростить до оценки величин $N_{II} = \Delta D_{II} / [C_6]$ и $N_{K} = \Delta D_{K} / [C_6]$, т. е. определять значение N_{K} , равное увеличению оптической плотности в 1 мин, пересчитанное на количество белка в 1 мл суспензии клеток, культивированных без лекарственных средств, и значение N_{π} для клеток, культивированных в присутствии лекарственных средств. При отношении $N_{\text{\tiny II}}/N_{\text{\tiny K}}$ <1 наблюдается положительный эффект влияния лекарственных средств на опухолевые клетки, и чем ближе эта величина к нулю, тем эффекты более выражены эффекты. При $N_{II}/N_{K} \ge 1$ лекарственные средства в первичной культуре или не влияют на опухолевые клетки, или усиливают пролиферативную активность клеток.

Интерпретация результатов: изменение активности АХЭ опухолевых клеток, культивируемых в первичной культуре без и в присутствии противоопухолевых лекарственных средств, позволяет оценивать влияние этих препаратов на опухоль.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

Перечень возможных ошибок: стандартная погрешность используемых автоматических пипеток-дозаторов и измерительных приборов.