МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Первый заместитель министра

31 декабря 2003 г.

Регистрационный № 10-0103

ДИАГНОСТИКА КАРЦИНОМЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ В ЗАТРУДНИТЕЛЬНЫХ СЛУЧАЯХ МЕТОДОМ МОРФОМЕТРИИ

Инструкция по применению

Учреждение-разрабомчик: Белорусский государственный медицинский университет

Учреждение-соисполнитель: Объединенный институт проблем информатики НАНБ

Авторы: д-р биол. наук В.А. Кириллов, Е.Е. Стебеняева, д-р мед. наук, проф., акад. Е.П. Демидчик, д-р техн. наук, проф. С.В. Абламейко, Н.И. Парамонова

ВВЕДЕНИЕ

В результате катастрофы на Чернобыльской АЭС около 2,2 млн человек (22% всего населения) подверглись радиационному воздействию. В первые 3 мес. чувствительную лучевую нагрузку за счет инкорпорированных изотопов йода получила щитовидная железа, что вызвало значительный рост тиреоидных заболеваний. В настоящее время зарегистрировано несколько сотен тысяч больных различными формами заболеваний щитовидной железы, из которых более чем у 7 000 выявлена карцинома, в том числе на начало 2003 г. — у 1 140 детей и подростков, подвергшихся радиационному воздействию в 1986 г. Из них у 766 человек наблюдаются регионарные метастазы тиреоидной карциномы. В стране ежегодно оперируются около 3 000 человек.

Одним из наиболее достоверных методов верификации диагноза на дооперационном этапе является цитологическое исследование пункционного материала щитовидной железы и лимфатических узлов шеи. Но, как правило, при пунктировании 25–50% мазков пунктатов оказываются неинформативными, т.к. они содержат только форменные элементы крови. Ранее было показано, что соотношение малых и больших лимфоцитов в тканях щитовидной железы и лимфатических узлов шеи изменяется при злокачественной патологии. Наиболее адекватно такие изменения популяции клеток лимфоидного ряда можно оценить с помощью компьютерной морфометрии.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Метод используется в случае получения при аспирационной биопсии неинформативных мазков пунктатов (адекватность препарата оценивается цитологом). Цитологический препарат считается неадекватным, если в нем при исследовании биопсийного материала как щитовидной железы, так и лимфатических узлов шеи присутствуют только форменные элементы крови, а в случае материала щитовидной железы он содержит менее 12 агрегатов специализированных клеток — тироцитов.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ

Для проведения световой морфометрии используется компьютерный анализатор изображений на базе персонального компьюте-

ра, светового микроскопа, цветной видеокамеры, захватчика кадров и соответствующее программное обеспечение.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА С УКАЗАНИЕМ ЭТАПОВ

Дифференциация злокачественных и доброкачественных заболеваний шитовидной железы

Этап 1. На аспирационную биопсию направлялись пациенты, у которых по данным пальпации или УЗИ подозревалась патология щитовидной железы и были обнаружены узловые образования в щитовидной железе.

Этап 2. После получения аспирационного материала его наносили на предметные стекла и ребром иглы равномерно распределяли по их поверхности.

Этап 3. После нанесения биологического материала на обезжиренные предметные стекла мазки высушивались на воздухе. Затем заливались красителем-фиксатором (эозин метиленовый синий) по Май-Грюнвальду на 3 мин. После этого мазок переносили в рабочий раствор красителя (азур-эозин) по Романовскому — Гимзе на 20–30 мин. Затем препараты ополаскивали дистиллированной водой и высушивали на воздухе.

Этап 4. Оценка цитологического препарата на предмет наличия тироцитов с помощью световой микроскопии. В случае их отсутствия препарат считался неинформативным.

Этап 5. Отбор изображений. С помощью компьютерного анализатора цветное изображение цитологического объекта выводилось на экран монитора (рис. 1). В процессе просмотра 80–100 полей зрения с объективом ×90 или ×100 отбирались картинки, содержащие лимфоидные клетки с таким расчетом, чтобы их общее число достигало 150 клеток. Файлы с изображениями заносились в соответствующую базу данных.

Этап 6. Обработка изображений. Компьютерная обработка цветных изображений осуществлялась в автоматическом режиме рядом последовательных операций: сегментация (рис. 2), оконтуривание (рис. 3) с последующим расчетом исходных параметров (рис. 4). Исходные морфометрические параметры лимфоидных клеток заносились в соответствующую базу данных.

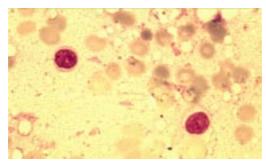


Рис. 1. Изображение неинформативного цитологического препарата. Видны лимфоидные клетки

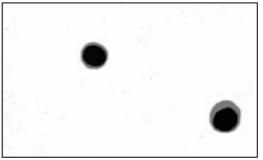
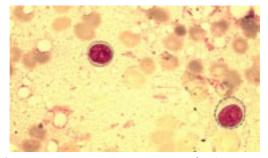



Рис. 2. Результат сегментации лимфоидных клеток

Puc. 3. Результат оконтуривания лимфоидных клеток в автоматическом режиме

Этап 7. Статистическая обработка исходных данных:

1. Расчет средних значений площади (S) и диаметра (D) проводился по 150 клеткам. Операция осуществлялась в автоматическом режиме (рис. 5).

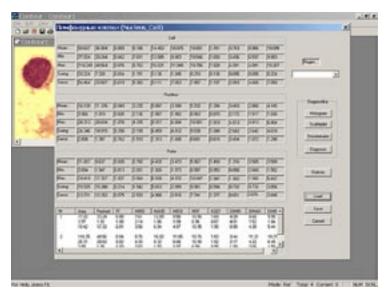


Рис. 4. Морфометрическая база данных параметров лимфоидных клеток

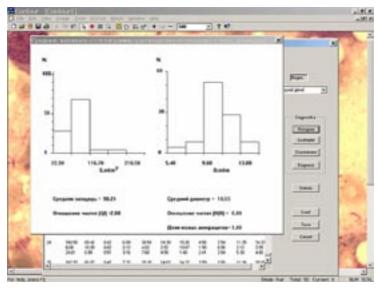


Рис. 5. Гистограммы распределения площади и среднего диаметра лимфоидных клеток

- 2. Построение гистограмм распределения площади и диаметра клеток осуществлялось по базе морфометрических данных. Расчет отношения частот на гистограммах площади (F_s) и диаметра (F_D) , также доли малых лимфоцитов (η) в общей популяции лимфоидных клеток проводился в автоматическом режиме (рис. 5).
- 3. Регрессионный анализ. Диаграммы рассеяния диаметра и площади клеток строились по базе данных. Затем к скоплению экспериментальных точек подбирались регрессионные кривые второго порядка $y = ax^2 + bx + c$. По уравнению кривой определялись коэффициенты полинома a, b и c. Все процедуры осуществлялись в автоматическом режиме (рис. 6).

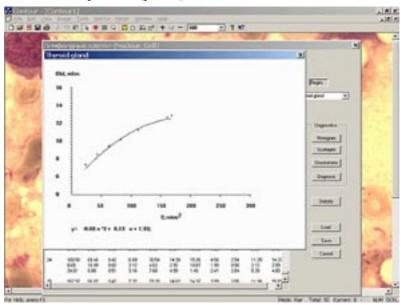


Рис. 6. Диаграмма рассеяния зависимости диаметра от площади лимфоидных клеток и регрессионная кривая второго порядка

4. Дискриминантный анализ. Сортировка лимфоидных клеток проводилась с помощью решающего правила, построенного по Байесову подходу для пары «злокачественная-доброкачественная патология». При этом автоматически определялся процент клеток (дискриминантный порог — D_{th}) с количественными параметрами характерными для тиреоидной карциномы.

Этап 8. Постановка диагноза с помощью экспертной системы. Полученные после статистической обработки исходных данных морфометрические параметры лимфоидных клеток ткани щитовидной железы автоматически заносились в Х-матрицу в определенный столбец или строку. Затем компьютерная программа в режиме реального времени автоматически сравнивала полученные Х-матрицы с S-матрицами (система граничных значений диагностических решающих критериев на базе совокупности морфометрических параметров лимфоидных клеток ткани щитовидной железы, см. табл. 1). Программа фиксировала совпадение элементов x_{ii} X-матрицы с соответствующими элементами s_{іі} каждой S-матрицы. Диагностический показатель рассчитывался по сумме значений весовых коэффициентов параметров, попавших в заданный диапазон системы при сравнении параметров исследуемого препарата с соответствующими параметрами группы злокачественной патологии (рис. 8, табл. 1, формула 1).

Таблица 1 Система граничных значений диагностических решающих критериев на базе совокупности морфометрических параметров лимфоидных клеток ткани щитовидной железы для дифференциации тиреоидной карциномы

Морфометрические параметры лимфоидных клеток	Граничные значе- ния параметров	Весовой коэффициент, %
Средняя площадь клеток	>82,6	10,2
Средний диаметр клеток	>10,0	11,9
Отношение частот на гистограм-мах распределения клеток	>1	12,8
Отношение частот на гистограммах распределения среднего диаметра клеток	>1	11,9
Доля малых лимфоцитов	0–3	13,2
Коэффициент а уравнения регрессии	>-1,21	8,4
Коэффициент b уравнения регрессии	<8,40	9,2
Свободный член с уравнения регрессии	>4,08	9,0
Дискриминантный индекс	≥68,5	13,4

$$D = \sum_{i=1}^{n} k_i p_i \tag{1}$$

где k_i весовой коэффициент i-го параметра лимфоидных клеток, а $p_i = \begin{cases} 1, \text{ если величина параметра пренадлежит диапазону системы} \\ 0, \text{ если величина параметра не пренадлежит диапазону системы} \end{cases}$

Пример I: Больной C., 13 лет. Предварительный диагноз — узловое образование щитовидной железы. После отбора цитологических изображений, их компьютерной обработки и статистического анализа исходной базы данных были получены следующие значения морфометрических параметров лимфоидных клеток: S=83,4; D=10,2; $F_S=2,2$; $F_D=1,6$; $\eta=1,1$; $a=-1,5\times 10^{-4}$; $b=8,7\times 10^{-2}$; c=4,0; $D_{th}=75,0$. Данные параметры автоматически заносятся в X_1 -матрицу. После сравнения с S-матрицей с учетом весовых коэффициентов (табл. 1, формула 1) рассчитывается диагностический индекс $D_1=10,2+11,9+12,8+11,9+13,2+13,4=73,4\%$. Следовательно, диагноз заболевания — рак щитовидной железы. Послеоперационный диагноз — папиллярный рак щитовидной железы.

Пример 2: Больной К., 43 года. Предварительный диагноз — узловое образование щитовидной железы. После отбора цитологических изображений, их компьютерной обработки и статистического анализа исходной базы данных были получены следующие значения морфометрических параметров лимфоидных клеток: $S=71,7; D=9,4; F_S=0,8; F_D=0,8; \eta=11,0; a=-2,2\times 10^{-4}; b=9,9\times 10^{-2}; c=3,5; D_{th}=54,5$. Данные параметры автоматически заносятся в X_2 -матрицу. После сравнения с S-матрицей с учетом весовых коэффициентов (табл. 1, формула 1) рассчитывается диагностический индекс $D_2=0\%$. Следовательно, заболевание щитовидной железы доброкачественной природы. Послеоперационный диагноз — фолликулярная аденома.

Дифференциация регионарных метастазов папиллярного рака щитовидной железы

Этап 1. Показаниями к проведению аспирационной биопсии лимфатических узлов шеи при наличии папиллярного рака являются: пальпаторно выявленные увеличенные лимфатические узлы (югулярные или паратрахеальные), в которых подозревается наличие метастазов; обнаружение узловых образований, выявленных при УЗИ.

Сходным образом и в той же последовательности этапов 2–7 осуществляется выявление наличия метастазов в лимфатических узлах шеи.

Этап 8. Постановка диагноза с помощью экспертной системы. Полученные после статистической обработки исходных данных

морфометрические параметры лимфоидных клеток ткани лимфатических узлов шеи (югулярных или паратрахеальных) автоматически заносились в X-матрицу в определенный столбец или строку. Затем компьютерная программа в режиме реального времени автоматически сравнивала полученные X-матрицы с S-матрицами (система граничных значений диагностических решающих критериев на базе совокупности морфометрических параметров лимфоидных клеток лимфатических узлов шеи, см. табл. 2). Программа также фиксировала совпадение элементов х_{іј} X-матрицы с соответствующими элементами ѕ_{іј} каждой S-матрицы. Диагностический показатель рассчитывался по сумме значений весовых коэффициентов параметров, попавших в заданный диапазон системы при сравнении параметров исследуемого препарата с соответствующими параметрами группы с метастазами папиллярного рака (формула 1, табл. 2).

Таблица 2 Система граничных значений диагностических решающих критериев на базе совокупности морфометрических параметров лимфоидных клеток ткани лимфатических узлов шеи для дифференциации метастазов папиллярного рака

Морфометрические параметры лимфоидных клеток	Граничные значе- ния параметров	Весовой коэффициент, %
Средняя площадь клеток	≥51,0 мкм²	12,6
Средний диаметр клеток	≥7,9 мкм	12,6
Отношение частот на гистограммах распределения площади клеток	≥1	11,8
Доля малых лимфоцитов	4-27,3%	12,6
Коэффициент а уравнения регрессии	≤-2,8	12,6
Коэффициент b уравнения регрессии	≥11,0	12,6
Свободный член с уравнения регрессии	≤3,2	12,6
Дискриминантный индекс	≥43,3%	12,6

Пример 3: Больной М., 27 лет. Гистологически верифицированный диагноз — папиллярный рак щитовидной железы. У больного обнаружены увеличенные югулярные лимфатические узлы шеи. После отбора цитологических изображений, их компьютерной обработки и статистического анализа исходной базы данных были получены следующие значения морфометрических параметров лимфоидных клеток: S = 60.8; D = 8.7; $F_S = 1.2$; $\eta = 27.4$; $a = -2.2 \times 10^{-4}$; $b = 10.1 \times 10^{-2}$; c = 3.4; $D_{th} = 65.8$. Данные параметры автоматически заносятся в X_3 -матрицу. После сравнения с

S-матрицей с учетом весовых коэффициентов (табл. 2, формула 1) рассчитывается диагностический индекс $D_3 = 12.6 + 12.6 + 11.8 + 12.6$

Пример 4: Умерший III., 24 года. После отбора цитологических изображений лимфоидных клеток ткани югулярного лимфатического узла, их компьютерной обработки и статистического анализа исходной базы данных были получены следующие значения морфометрических параметров клеток лимфоидного ряда: $S=32,2;\ D=6,4;\ F_S=0,1;\ \eta=95,9;\ a=-5,1\times 10^{-4};\ b=13,3\times 10^{-2};\ c=2,6;\ D_{th}=1,3$. Данные параметры автоматически заносятся в X_4 -матрицу. После сравнения с S-матрицей с учетом весовых коэффициентов (табл. 2, формула 1) рассчитывается диагностический индекс $D_4=0\%$. Следовательно, в югулярном лимфатическом узле констатируют отсутствие метастазов папиллярного рака. Гистологическое заключение — лимфатический узел в норме.