МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕ	РЖДАЮ
Первый зам	еститель Министра
	Р.А. Часнойт
27 апреля 20	007 -
2 / ampenia 20	JO / T.

ПЕРВИЧНАЯ ПРОФИЛАКТИКА БРОНХОЛЕГОЧНОЙ ДИСПЛАЗИИ У ГЛУБОКОНЕДОНОШЕННЫХ НОВОРОЖДЕННЫХ ПРИ ПРОВЕДЕНИИ ПРОЛОНГИРОВАННОЙ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: ГУ «Республиканский научнопрактический центр «Мать и дитя»

АВТОРЫ: канд. мед. наук, доц. К.У. Вильчук, канд. мед. наук, доц. Т.В. Гнедько, И.И. Паюк, С.А. Берестень

Активное развитие неонатальной интенсивной терапии в последние годы способствует снижению летальности при критических состояниях новорожденных, нуждающихся В респираторной поддержке. Однако проблемы, связанные c качеством оказания неотложной помощи недоношенным требующим проведения пролонгированной младенцам, искусственной вентиляции легких (ИВЛ), остались. Поэтому существенное значение практической неонатологии имеет уменьшение ДЛЯ осложнений, которые приводят к развитию хронических заболеваний легких уже в первый месяц жизни, а именно бронхолегочной дисплазии (БЛД).

Предлагаемый способ первичной профилактики развития БЛД у новорожденных с экстремально низкой массой тела основан на оценке повреждающего действия параметров ИВЛ на легкие недоношенного младенца с использованием интегральных показателей и предназначен для внедрения в работу детских отделений реанимации и интенсивной терапии врачами-неонатологами, детскими анестезиологами-реаниматологами.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, ПРЕПАРАТОВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

Оборудование для обеспечения теплового режима и дыхательной терапии, мониторинга состояния ребенка, диагностики и лечения должно соответствовать Приказу МЗ РБ № 184 от 05.10.1992 г. «О дальнейшем совершенствовании анестезиологической и реанимационной помощи детям в Республике Беларусь».

Для лабораторного обследования и контроля необходимы: анализатор кислотно-основного состояния (КОС), набор реактивов для контроля КОС.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Проведение ИВЛ недоношенному новорожденному ребенку с массой тела менее 1500 г длительностью более 3 сут.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ Нет.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ СПОСОБА

I этап. Выделение группы риска развития БЛД

Анамнестические данные:

- преждевременные роды;
- низкая масса тела при рождении (от 500 до 1500 г);

Клинические данные:

- респираторные нарушения в раннем постнатальном периоде (РДС, асфиксия новорожденного тяжелой степени, врожденная пневмония и др.) с дыхательной недостаточностью 2-3 степени, требующей проведения ИВЛ не менее 3 сут;

- проведение ИВЛ с «жесткими» параметрами (высокая концентрация кислорода во вдыхаемой смеси, высокое положительное давление в конце выдоха, высокое среднее давление в дыхательных путях и др.).

II этап. Установка и регистрация основных параметров ИВЛ

- концентрация кислорода в газовой смеси (FiO₂);
- максимальное давление в конце вдоха (Pinsp);
- положительное давление в конце выдоха (РЕЕР);
- время вдоха (Tinsp);
- частота дыхательных циклов (ЧД);
- скорость потока дыхательной смеси (f);
- среднее давление в дыхательных путях (МАР).

Оценка параметров ИВЛ для недоношенных младенцев проводится в соответствии с разработанными показателями, а также с учетом развития БЛД в постнеонатальном периоде (таблица 1).

Таблица 1 – Параметры искусственной вентиляции легких у глубоконедоношенных детей в динамике раннего неонатального периода

Попоможну	Новорожденные с развитием БЛД		Новорожденные без развития БЛД	
Параметры	при рождении	7-е сутки жизни	при рождении	7-е сутки жизни
ЧД, дых./мин	45,7±1,5 P ₁₋₂ 0,001	23,3±1,9 P ₂₋₄ 0,05	44,6±2,3 P ₃₋₄ <0,001	33,3±3,9
Tinsp, c	0,38±0,01	0,38±0,01	0,38±0,01	0,39±0,01
Pinsp, mbar	20,3±0,6	18,6±0,5	20,2±0,9	19,8±1,1
PEEP, mbar	2,5±0,1 P ₁₋₃ 0,05	2,6±0,14	3,0±0,2	3,3±0,3
FiO ₂	0,62±0,03 P ₁₋₂ 0,01	0,40±0,02	0,52±0,04	0,46±0,05
f, л/мин	9,3±0,3	9,4±0,3	8,5±0,6	9,4±0,8
MAP, mbar	7,56±0,36 P ₁₋₂ 0,01	5,55±0,38	8,08±0,57	6,75±0,71

III этап. Определение показателей газового состава крови и их оценка

 PaO_2 – парциальное давление кислорода в артериальной крови;

 $PaCO_2$ — парциальное давление углекислого газа в артериальной крови; SaO_2 — насыщение артериальной крови кислородом.

Оценка показателей газового состава и КОС артериальной крови у глубоконедоношенных младенцев в динамике раннего неонатального периода проводится в соответствии с разработанными данными (таблица 2).

Таблица 2 – Показатели газового состава и КОС артериальной крови у

глубоконедоношенных младенцев без развития БЛД

Показатели	При рождении	7-е сутки жизни
SaO ₂ , %	97,7±1,1	97,3±0,9
рН	7,33±0,02	7,30±0,01
РаСО ₂ , мм рт.ст.	36,3±2,5	47,3±3,2
РаО ₂ , мм рт.ст.	47,7±4,9	49,9±2,2
tCO ₂ , ммоль/л	20,20±1,40	28,86±3,66

Проведение теста на гипероксию с определением SaO₂ и PaO₂.

IV этап. Расчет интегральных индексов при проведении ИВЛ

Оценка вентиляционно-перфузионных соотношений на фоне ИВЛ проводилась по динамике расчетных индексов: индекс оксигенации (ИО), инвазивности (ИИ), повреждения легких (ИПЛ) и альвеолярно-артериальному градиенту по кислороду (A-а DO_2), при расчете которых учитывались параметры ИВЛ, показатели газового состава крови и данные теста на гипероксию.

Расчет индексов проводился по следующим формулам:

ИО=PaO₂/FiO₂

ИИ= $MAP \times FiO_2/PaO_2$

ИПЛ= $Pin \times (FiO_2/PaO_2) \times 10$

 $A-aDO_2=[(713 \times (FiO_2 - PaCO_2))] - PaO_2$

V этап. Оценка результатов расчета интегральных индексов

Нормативные показатели вентиляционно-перфузионных отношений у недоношенных новорожденных, родившихся с очень и крайне низкой массой тела, находившихся на искусственной вентиляции легких, в динамике раннего неонатального периода разработаны на основании расчета индексов у глубоконедоношенных новорожденных без развития БЛД на фоне ИВЛ (таблица 3).

Таблица 3 – Нормативные показатели вентиляционно-перфузионных отношений у глубоконедоношенных новорожденных

Показатели	При рождении	7-е сутки жизни
ИО	109,8-130,3	151,5-171,8
ИИ	0,06-0,09	0,02-0,03
ИПЛ	1,72-2,35	1,12-1,30
A-aDO ₂	204,5-304,6	147,2-170,1

При наличии у недоношенных младенцев с низкой массой тела при рождении интегральных респираторных индексов в указанных пределах развитие БЛД в последующем не отмечалось.

Использование индексов оксигенации, инвазивности, повреждения легких и альвеолярно-артериального градиента по кислороду позволило оценить степень повреждения легких при проведении ИВЛ.

Повышение ИИ до 0,05, ИПЛ до 1,66 и A-а DO_2 до 203,9 к 7-м суткам жизни при проведении ИВЛ младенцам с низкой массой тела может расцениваться как ранний диагностический и прогностический критерий БЛД.

VI этап. Первичная профилактика БЛД

Профилактика БЛД у недоношенных новорожденных с очень и крайне низкой массой тела при рождении основывается ограничении на баротравмы, токсического влияния кислорода, предотвращении предупреждении и лечении инфекционно-воспалительных осложнений со стороны бронхолегочной системы И обеспечении достаточном энергетических потребностей новорожденных, находящихся на ИВЛ.

С целью первичной профилактики БЛД при оценке интегральных респираторных индексов необходима их коррекция до уровня, который отмечался у младенцев без БЛД за счет изменения основных составляющих, используемых при их расчете: MAP, FiO_2 , ЧД, Pinsp, PEEP.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

Нет.