МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Р.А. Часнойть
23 мая 2008 г.
Регистрационный № 096-1107

ПРЕ- И ПОСТНАТАЛЬНАЯ ДНК-ДИАГНОСТИКА МЫШЕЧНЫХ ДИСТРОФИЙ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: ГУ «Республиканский научнопрактический центр «Мать и дитя»

АВТОРЫ: канд. мед. наук С.П. Фещенко, канд. мед. наук И.В. Наумчик, канд. мед. наук Н.В. Румянцева, С.О. Мясников, Т.В. Осадчук, Р.Д. Хмель

Прогрессирующая мышечная дистрофия Дюшенна–Бекера (МДДБ) — наиболее частая форма мышечной дистрофии у детей, которая наследуется по X-сцепленному рецессивному типу. Частота заболевания составляет 1 на 3500 новорожденных мальчиков (мышечная дистрофия Дюшенна) и 1 на 20000 новорожденных мальчиков (мышечная дистрофия Бекера).

Миотоническая дистрофия представляет собой одну из наиболее частых форм мышечной дистрофии у взрослых (распространенность — от 2 до 15 случаев на 100 000 человек).

Цель данной инструкции — пре- и постнатальная (витальная) ДНК- диагностика мышечной дистрофии Дюшенна—Бекера и миотонической дистрофии.

Область применения методов — медицинская генетика, неврология.

Уровень внедрения: ГУ РНПЦ «Мать и дитя», областные медикогенетические центры.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, ПРЕПАРАТОВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

- 1. Оборудование:
- амплификатор
- генетический анализатор
- термостат для микропробирок
- пробирки для ПЦР объемом 0,2 мл
- пробирки объемом 1,5 мл
- пробирки объемом 50 мл
- дозаторы переменного объема
- одноразовые наконечники для дозаторов
- камера для электрофореза в полиакриламидном геле
- источник постоянного тока
- трансиллюминатор
- система для документирования гелей
 - 2. Реагенты:
- Таq-полимераза с соответствующим буфером и раствором MgCl₂
- раствор дезоксирибонуклеотидов (dNTP) dGTP, dCTP, dATP, dTTP
- диметилсульфоксид (DMSO)
- маркер молекулярного веса ROX 350
- маркер молекулярного веса LIZ 500
- бромфеноловый синий
- ксиленцианол
- глицерин
- акриламид
- N,N'-метиленбисакриламид
- Трис
- Na₂ЭДТА

- уксусная кислота
- персульфат аммония (APS)
- тетраметилэтилендиамин (ТЕМЭД)
- этидиум бромид
- NH₄Cl
- KHCO₃
- NaHCO₃
- борная кислота
- этиловый спирт 96%
- додецилсульфат натрия (SDS)
 - 3. Растворы:

Лизирующий буфер

NH ₄ Cl — 8,29 г		NH ₄ Cl — 8,29 г		
КНСО ₃ — 1 г	или	NaHCO ₃ — 0,84 г		
Na ₂ EDTA — 0,04 г		Na $_2$ EDTA — 0,03 г		
Довести объем раствора до 1 л дистиллированной H_2O				

3M CH₃COONa

CH₃COONa — 246 г

Довести объем раствора до 1 л дистиллированной Н₂О

10 % SDS

SDS — 0,1 г

Довести объем раствора до 1 мл дистиллированной H₂O

<u>ТЕ-буфер (рН 8,4)</u>

Трис — 1,21 г

Na₂EDTA — 0,372 г

Довести объем раствора до 1 л деионизированной ${\rm H_2O}.$ Стерилизовать автоклавированием

10% DMSO

DMSO — 0,1 г

Довести объем раствора до 1 мл дистиллированной H₂O

30% акриламид (29:1)

акриламид — 29 г

1% N-N-метиленбисакриламид — 1 г

Довести объем раствора до 100 мл дистиллированной H₂O

20% APS

APS — 0,2 г

Довести объем раствора до 1 мл дистиллированной H_2O 10х ТВЕ (Трис-боратный буфер)

Трис — 54 г

Na₂EDTA — 3,72 г

Борная кислота — 27,5 г

Довести объем раствора до 0,5 л дистиллированной H₂O

50х ТАЕ (Трис-ацетатный буфер)

Трис — 121 г

Na₂EDTA — 9,3 г

Уксусная кислота (ледяная) — 28,5 мл

Довести объем раствора до 0,5 л дистиллированной H₂O

6х погружающий раствор

Бромфеноловый синий — 0,005 г

Ксиленцианол — 0,005 г

Глицерин — 1 мл

Дистиллированная H₂O — 1 мл

9% полиакриламидный гель (ПААГ 10х15х0,1 см, конечный объем 15 мл):

30% акриламид (29:1) — 4,5 мл	30% акриламид (29:1) — 4,5 мл	
10x TBE — 1,5 мл	50х ТАЕ — 0,3 мл	
Дистиллированная $H_2O - 9$ мл	Дистиллированная $H_2O - 10,2$ мл	
20% APS — 60 мкл	20% APS — 60 мкл	
ТЕМЭД — 20 мкл	ТЕМЭД — 20 мкл	

Этидиум бромид (10 мг/мл)

Растворить 1 г этидиум бромида в 100 мл дистиллированной H₂O

Проявляющий раствор

Развести 100 мкл раствора этидиум бромида (10 мг/мл) в 1 л дистиллированной $\rm H_2O$.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

- 1. Наличие у пациента клинико-биохимических признаков мышечной дистрофии Дюшенна–Беккера.
 - 1.1. Выявление крупных делеций гена дистрофина.
- 1.2. Установление носительства мутантной X-хромосомы в семьях с высоким риском рождения больного ребенка.
- 2. Наличие у пациента клинико-биохимических признаков миотонической дистрофии.
- 2.1. Определение количества CTG-повторов в гене миотонинпротеинкиназы

Алгоритм ДНК-диагностики мышечной дистрофии Дюшенна—Бекера и миотонической дистрофии отображен на рис. 1.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

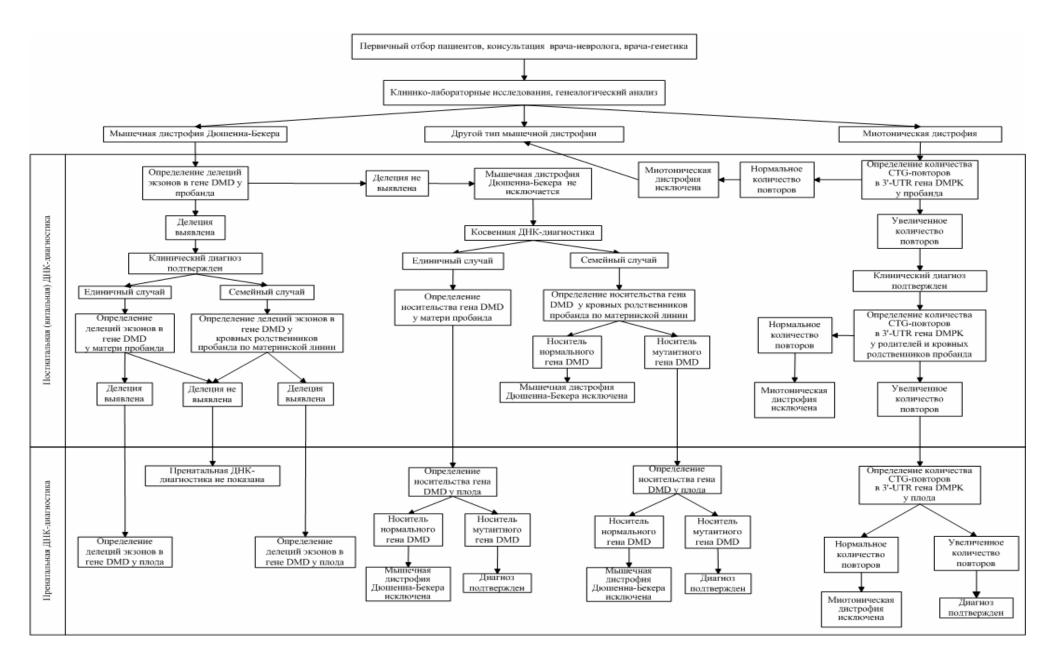


Рис. 1. Алгоритм ДНК-диагностики мышечных дистрофий

1. Методы выделения ДНК

Выделение лейкоцитов периферической крови и ДНК осуществляли согласно стандартным методам.

Выделение ДНК из амниотической жидкости

- 1. Амниотическую жидкость внести в центрифужные пробирки объемом 15 мл и центрифугировать 20 мин при 2000g.
- 2. К клеточному осадку добавить 450 мкл 0,9% раствора NaCl, 45 мкл 10% SDS и протеиназу К до конечной концентрации 1 мкг /мл.
- 3. Ингредиенты тщательно перемешать и инкубировать 10–12 ч при 37 °C либо 2–4 ч при 56 °C. Далее выделять ДНК стандартным методом фенол-хлороформной экстракции.

2. ДНК-диагностика мышечных дистрофий ДНК-диагностика мышечной дистрофии Дюшенна–Бекера

Выявление делеций гена дистрофина

Для молекулярно-генетической диагностики МДДБ используется методика прямого определения крупных делеций гена дистрофина с помощью классической и мультиплексной ПЦР (мПЦР).

Амплификационная смесь для мПЦР конечным объемом 50 мкл содержит 200—250 нг ДНК, 1х ПЦР буфер, 2 мМ $MgCl_2$, 150 мкМ dNTP, 3 мкл 10% DMSO, праймеры, приведенные в табл. 1, и две единицы активности Таq-полимеразы.

Амплификация проводится при следующих условиях: первичная денатурация 94 °C, 4 мин; затем 35 циклов: денатурация: 94 °C, 30 с; отжиг 54 °C, 45 с; элонгация 65 °C, 2 мин; конечная элонгация 65 °C, 5 мин.

Амплификационная смесь для классической ПЦР конечным объемом 20 мкл содержит 100 нг ДНК, 1х ПЦР буфер, 2,5 мМ $MgCl_2$, 200 мкМ dNTP, праймеры, приведенные в табл. 2, и 0,5 единицы активности Таqполимеразы.

Амплификация проводится при следующих условиях: первичная денатурация 94 °C, 4 минуты; затем 30 циклов: денатурация 94 °C, 30 с; отжиг 54 °C, 30 с; элонгация 65 °C, 1 мин; конечная элонгация 65 °C, 5 мин.

Обязательным условием при выявлении делеций использование положительного контрольного образца, в качестве которого можно применять ДНК матери пробанда или клинически здорового донора мужского пола. Отсутствие продукта амплификации экзона у пациента и присутствие его в контрольном образце свидетельствует о делеции экзона. Bo избежание ложноположительных результатов следует повторную амплификацию отсутствующего при мПЦР экзона методом классической ПЦР.

Праймеры, использованные для мПЦР

Экзон	Количество каждого праймера, пмоль	Размер продукта (п.о.)	Прямой праймер 5'-3'	Обратный праймер 5'-3'				
	1-я смесь праймеров							
4	5	196	ttgtcggtctcctgctggtcagtg	caaagccctcactcaaacatgaagc				
13	8	238	aataggagtacctgagatgtagcagaaat	ctgaccttaagttgttcttccaaagcag				
8	7	360	ggcctcattctcatgttctaattag	gtcctttacacactttacctgttgag				
3	7	410	teatecatetteggeagattaa	caggeggtagagtatgccaaatgaaaatca				
19 5 459			gatggcaaaagtgttgagaaaaagtc	ttctaccacatcccattttcttcca				
1	8	535	gaagatctagacagtggatacataacaaatgcatg	ttctccgaaggtaattgcctcccagatctgagtcc				
	2-я смесь праймеров							
42 5 155			cacactgtccgtgaagaaacgatgatg	ttagcacagaggtcaggagcattgag				
47 7 181		181	cgttgttgcatttgtctgtttcagttac	gtctaacctttatccactggagatttg				
6 5 202		202	ccacatgtaggtcaaaaatgtaatgaa	gtctcagtaatcttcttacctatgactatgg				
45 7 307		307	cttgatccatatgcttttacctgca	tecateaceetteagaacetgatet				
43 7 375			gaacatgtcaaagtcactggacttcatgg	atatatgtgttacctacccttgtcggtcc				
	_		3-я смесь праймеров					
52	5	113	aatgcaggatttggaacagaggcgtcc	ttcgatccgtaatgattgttctagcctc				
60	5	139	aggagaaattgcgcctctgaaagagaacg	ctgcagaagettccatctggtgttcagg				
53	7	212	ttgaaagaattcagaatcagtgggatg	cttggtttctgtgattttcttttggattg				
50	5	271	caccaaatggattaagatgttcatgaat	teteteteacecagteateactteatag				
51	7	388	gaaattggctctttagcttgtgtttc	ggagagtaaagtgattggtggaaaatc				
49	5	439	gtgcccttatgtaccaggcagaaattg	gcaatgactcgttaatagccttaagatc				

Праймеры, использованные для классической ПЦР

Экзон	Количество каждого праймера, пмоль	Размер продукта (п.о.)	Прямой праймер 5'-3'	Обратный праймер 5'-3'
12	5	331	gatagtgggctttacttacatccttc	gaaagcacgcaacataagatacacct
16	5	290	tctatgcaaatgagcaaatacacgc	ggtatcactaacctgtgctgtactc
17	5	416	gactttcgatgttgagattactttccc	aagettgagatgeteteaeettttee
32	5	253	gaccagttattgtttgaaaggcaaa	ttgccaccagaaatacataccacacaatg
34	5	171	gtaacagaaagaaagcaacagttggagaa	ctttccccaggcaacttcagaatccaaa
41	8	274	gttagctaactgccctgggccctgtattg	tagagtagtagttgcaaacacatacgtgg
48	8	506	ttgaatacattggttaaatcccaacatg	cctgaataaagtcttccttaccacac

Косвенная ДНК-диагностика методом анализа STR-маркеров

Для анализа STR-маркеров используется метод классической ПЦР с последующим разделением продуктов амплификации с помощью капиллярного гель-электрофореза на генетическом анализаторе.

Реакционная смесь с конечным объемом 20 мкл содержит 100 нг ДНК, 1х ПЦР буфер, 2 мМ $MgCl_2$, 100 мкМ dNTP, по 5 пмоль каждого праймера и 0,5 единицы активности Taq-полимеразы.

Для обеспечения флуоресценции образцов ДНК при тестировании на генетическом анализаторе используются прямые праймеры, имеющие метку 6-FAM на 5'-конце. Последовательность праймеров и условия амплификации приведены в табл. 3.

Таблица 3 Последовательность праймеров и условия амплификации для STR-маркеров

Название	Последовательность 5'-3'	Условия амплификации				
праймера		Стадия ПЦР	Температура, °С	Время	Количество циклов	
STR-44-F STR-44-R STR-45-F STR-45-R	6-FAM-tecaacattggaaatcacatttcaa teateacaaatagatgttteacag 6-FAM-gaggetataattetttaaetttgge etettteeetetttatteatgttae	начальная денатурация денатурация отжиг элонгация	95 95 63 72 72	5 мин 30с 30 с 25 с 3 мин	30	
STR-49-F	6-FAM-egtttaceageteaaaateteaae	конечная элонгация начальная денатурация	95 95	5 мин 30 с		
STR-49-R	catatgatacgattcgtgttttgc	денатурация отжиг элонгация конечная элонгация	64 72 72	30 с 25 с 3 мин	30	
DI671-F	6-FAM-tegeceetteagaagteact	начальная денатурация	95 95	5 мин 30 с		
DI671-R	gtccagcagatcaatcgtccagc	денатурация отжиг элонгация конечная элонгация	отжиг элонгация	60 72 72	30 с 30 с 3 мин	25
DYS-II-F	6-FAM- tcttgatatatagggattatttgtgtttgttatac	начальная денатурация	95 95	5 мин 30 с		
DYS-II-R	attatgaaactataaggaataactcatttagc	денатурация отжиг элонгация конечная элонгация	60 72 72	30 с 1 мин 3 мин	30	

ДНК-диагностика миотонической дистрофии

Для молекулярно-генетической диагностики миотонической дистрофии используется методика прямого определения количества СТG повторов в гене миотонинпротеинкиназы с помощью классической ПЦР с последующим разделением продуктов амплификации посредством капиллярного гельэлектрофореза.

Амплификационная смесь с конечным объемом 20 мкл содержит 100 нг ДНК, 1х ПЦР буфер, 1,5 мМ MgCl₂, 2 мкл 10% диметилсульфоксида, 200 мкМ dNTP, по 5 пмоль праймеров и 0,75 единиц активности Тад-полимеразы.

Для обеспечения флуоресценции образцов ДНК при тестировании в автоматическом анализаторе используется меченый прямой праймер с молекулой-«репортером» 6-FAM на 5'-конце.

Последовательность праймеров:

- 1. DM101 5'- 6-FAM- CTTCCCAGGCCTGCAGTTTGCCCATC-3'
- 2. DM102 5'- GAACGGGGCTCGAAGGGTCTTGTAGC-3'

После денатурации образцов при 95 °C в течение 5 мин выполняется 30 циклов амплификации при следующих условиях: 1 мин денатурации при 95 °C, 1 мин отжига при 65 °C и 1 мин синтеза при 72 °C. На завершающей стадии синтеза пробирки выдерживаются 7 мин при 72 °C.

3. Электрофоретический анализ продуктов ПЦР

Электрофоретический анализ в полиакриламидном геле

Для разделения продуктов мПЦР необходимо использовать 9% ПААГ (29:1) длиной не менее 10 см. Электрофоретическое разделение следует проводить в течение 1,5–2 часов при 260 В.

После проведения электрофореза поместить гель на 10–15 мин в проявляющий раствор. Визировать результаты электрофоретического разделения в проходящем ультрафиолетовом свете. Для документального фиксирования результатов можно использовать камеру для фотографирования гелей.

Электрофоретический анализ в генетическом анализаторе

0,7 мкл амплификата смешать с 0,7 мкл маркера молекулярного веса и 8,5 мкл деионизированного формамида. Смесь денатурировать 2,5 мин при 95 °C. Электрофорез проводится при следующих параметрах: время инъекции образца в капилляр — 5 с, время разделения — 24 мин, напряжение — 7,5 кВ, длина детектора — 36 см. Обработка данных выполняется с помощью стандартного пакета компьютерных программ для генетического анализатора.

Ошибки при выполнении могут быть связаны с загрязнением образцов ДНК и реактивов, деградацией образцов ДНК и реактивов вследствие нарушения условий хранения, а также несоблюдением правил проведения рекомендуемых методик.

4. Примеры ДНК-диагностики мышечной дистрофии Дюшенна— Бекера и миотонической дистрофии

Выявление делеций гена дистрофина

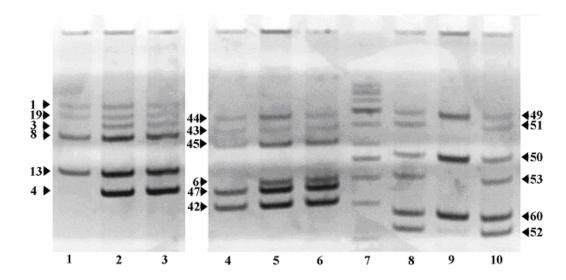


Рис. 2. Электрофореграмма продуктов мПЦР. Дорожки 1, 4, 8 — пациент № 1; дорожки 2, 5, 9 — пациент № 2, дорожки 3, 6, 10 — контрольный образец, 7 — маркер молекулярного веса. Цифрами указаны номера амплифицированных экзонов гена дистрофина

Интерпретация результатов: у пациента № 1 — делеция 3, 4 и 6-го экзонов, у пациента № 2 — делеция 51, 52 и 53-го экзонов гена дистрофина, что подтверждает клинический диагноз МДД.

Анализ STR-маркеров

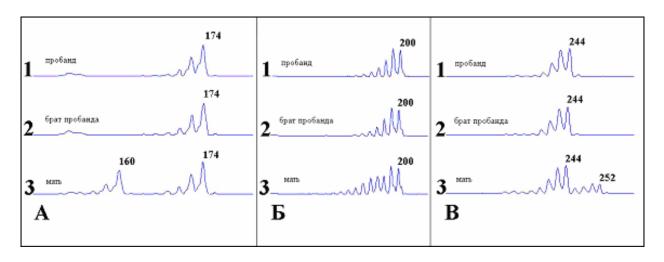


Рис. 3. Результаты автоматического флуоресцентного анализа продуктов амплификации STR-маркеров дистрофина. А — маркер STR-44; Б — маркер STR-45; В — маркер STR-49. Дорожка № 1 — пробанд, дорожка № 2 — брат пробанда, дорожка № 3 — мать пробанда

Интерпретация результатов: для данной семьи информативными являются маркеры STR-44 и STR-49, так как мать является гетерозиготой по этим маркерам (аллели 160/174 для STR-44 и аллели 244/252 для STR-49).

Определение количества СТG-повторов в гене миотонинпротеинкиназы

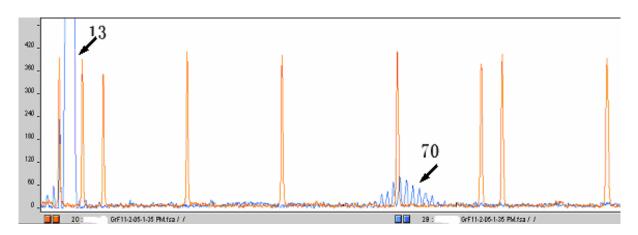


Рис. 4. Результаты автоматического флуоресцентного анализа продуктов амплификации аллелей с экспансией СТG-повторов. Вариант генотипа 13/70 (аллели указаны стрелками)

Интерпретация результатов: наличие аллеля 70 подтверждает клинический диагноз «миотоническая дистрофия».