МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Первый заместитель Министра

Д.Л. Пиневич 2019 г.

Регистрационный № 096 - 06/9

АЛГОРИТМ ОПРЕДЕЛЕНИЯ ДНК И УСТОЙЧИВОСТИ К РИФАМПИЦИНУ МИКОБАКТЕРИЙ ТУБЕРКУЛЕЗА МЕТОДОМ ПЦР В РЕАЛЬНОМ ВРЕМЕНИ

Инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: государственное учреждение «Республиканский научно-практический центр пульмонологии и фтизиатрии»

АВТОРЫ: к.м.н., доцент Дюсьмикеева М.И., д.м.н., профессор Гуревич Г.Л., к.м.н., доцент Яцкевич Н. В., к.м.н. Котович Д.С., Николенко Е.Н., д.м.н. Скрягина Е.М.

Минск, 2019

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Д. Л. Пиневич
28.06.2019
Регистрационный № 069-0619

АЛГОРИТМ ОПРЕДЕЛЕНИЯ ДНК И УСТОЙЧИВОСТИ К РИФАМПИЦИНУ МИКОБАКТЕРИЙ ТУБЕРКУЛЕЗА МЕТОДОМ ПЦР В РЕАЛЬНОМ ВРЕМЕНИ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: ГУ «Республиканский научно-практический центр пульмонологии и фтизиатрии»

АВТОРЫ: канд. мед. наук, доц. М. И. Дюсьмикеева, д-р мед. наук, проф. Г. Л. Гуревич, канд. мед. наук, доц. Н. В. Яцкевич, канд. мед. наук Д. С. Котович, Е. Н. Николенко, д-р мед. наук Е. М. Скрягина

В настоящей инструкции по применению (далее — инструкция) изложен алгоритм диагностики туберкулеза органов дыхания (кроме туберкулеза легких), туберкулеза других органов (далее — внелегочного туберкулеза), а также определения лекарственной устойчивости возбудителя, основанный использовании молекулярно-генетического метода микробиологической диагностики туберкулеза. Метод заключается в исследовании нереспираторных образцов и тканевого материала с помощью полимеразной цепной реакции (ПЦР), что позволяет обнаружить ДНК микобактерий туберкулеза (МБТ) и быстро определить лекарственную устойчивость МБТ (к рифампицину). Алгоритм может быть использован в комплексе медицинских услуг, направленных на диагностику внелегочного туберкулеза.

Инструкция предназначена для врачей-фтизиатров, врачей-онкологов, врачей-хирургов, врачей-патологоанатомов, врачей-бактериологов, врачей лабораторной диагностики, иных врачей-специалистов организаций здравоохранения, оказывающих медицинскую помощь пациентам с внелегочным туберкулезом в стационарных и (или) амбулаторных условиях, и (или) отделениях дневного пребывания.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

Лабораторное оборудование:

бокс биологической безопасности (БББ) II класса;

автоматизированная система для быстрой одновременной детекции ДНК МБТ и устойчивости МБТ к рифампицину;

встряхиватель лабораторный (шейкер);

центрифуга лабораторная 3000g с охлаждением, с герметично закрывающимися центрифужными стаканами, препятствующими образованию аэрозоля;

таймер;

холодильник, позволяющий поддерживать температуру от 2 до 6 °C.

Медицинские изделия:

пипетки пластиковые стерильные одноразовые;

пробирки центрифужные 50 мл типа «фалькон» из полипропилена высокой плотности с завинчивающейся крышкой, с «юбкой», конические градуированные стерильные;

штативы для пробирок центрифужных;

пипетки Пастера пластиковые градуированные, 3 мл, стерильные;

контейнер с воронкой для слива надосадочной жидкости;

пакеты для автоклавирования одноразовые;

ступка фарфоровая с пестиком;

песок стерильный;

пинцет;

салфетки из нетканого материала;

средство дезинфицирующее с туберкулоцидным эффектом;

картриджи с реагентами к автоматизированной системе для быстрой одновременной детекции ДНК МБТ и устойчивости МБТ к рифампицину;

одноразовые перчатки без талька;

респиратор;

халат хирургический одноразовый;

маркер перманентный.

Реактивы:

Реагент	Условия хранения
Sample Reagent (SR)	Комнатная температура
Дитиотреитол-dl	От 2 до 8 °C
Раствор	В темноте, комнатная температура, не
стерильный	более 1 недели
N-ацетил-L-цистеин	От 2 до 8 °C
Буфер фосфатный 0,067 М/л, рН = 6,8	От 2 до 8 °C, не более
стерильный	1 недели

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Туберкулез органов дыхания (МКБ1-10 — A15.4-A15.9; A16.3-A16.9), в т. ч.е туберкулез внутригрудных лимфатических узлов (A15.4, A16.3), туберкулез гортани, трахеи и бронхов (A15.5, A16.4), туберкулезный плеврит (A15.6, A16.5); туберкулез нервной системы (A17); туберкулез других органов (A18), в т. ч. туберкулез костей и суставов (A18.0); туберкулез мочеполовых органов (A18.1); туберкулезная периферическая лимфаденопатия (A18.2); туберкулез кишечника, брюшины и брыжеечных лимфатических узлов (A18.3); туберкулез кожи и подкожной клетчатки (A18.4); туберкулез глаза (A18.5); туберкулез уха (A18.6); туберкулез надпочечников (A18.7); туберкулез других уточненных органов (A18.8); милиарный туберкулез (A19).

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

- 1. Получение биологического материала.
- 1.1. При клинико-рентгенологической симптоматике, требующей диагностики внелегочного туберкулеза, до операции получают биологический материал (нереспираторные образцы), выполняют биопсию пораженного органа, в т. ч. видеоассистированную торакоскопию (ВАТС) с прицельной биопсией пораженных участков.
- 1.2. Материалом для исследования являются нереспираторные образцы (гной из холодных абсцессов, пунктаты лимфатических узлов, плевральная, спинно-мозговая, синовиальная или асцитическая жидкость, моча) и тканевой материал (резецированные ткани, грануляции, соскобы синовиальных оболочек, лимфатические узлы).

1.3. Нереспираторные образцы и/или кусочки ткани из основного очага поражения и окружающих тканей (очаги-отсевы) до их фиксации забирают с максимальным соблюдением правил асептики.

Минимальный объем материала для плевральной, спинно-мозговой, синовиальной или асцитической жидкости — 3 мл, крови — 5–10 мл.

Материал помещают в стерильный флакон без консервантов и немедленно доставляют в лабораторию.

1.4. Кровь необходимо доставлять в специальных пробирках, содержащих цитрат или гепарин.

Если в исследуемом образце может образоваться большой сгусток (например, в плевральной или асцитической жидкости), рекомендуется добавить к биологическому материалу в момент его сбора цитрат натрия.

- 1.5. Мочу (среднюю часть утренней порции, не менее 200 мл) собирают в стерильную посуду после тщательного туалета наружных половых органов. Анализ мочи на микобактерии должен предусматривать обязательное трехкратное исследование. Моча доставляется в лабораторию в тот же день, использование консервантов не допускается.
- 1.6. Величина кусочка ткани для исследования из основного очага поражения и окружающих тканей составляет не менее 2 см². Образец ткани доставляется в микробиологическую лабораторию в стерильном контейнере.

Для разжижения и деконтаминации резекционные (тканевые) образцы предварительно обрабатывают реактивом *дитиотреитол-dl*.

При работе с резекционными (тканевыми) образцами необходима многократная отмывка от примесей крови в образцах хлористым аммонием при высоких оборотах центрифуги.

- 1.7. Если исследование биологического материала не может быть произведено в день получения пробы, в контейнер с образцами необходимо добавить равное по объему количество стерильного физиологического раствора (не менее 1 мл), чтобы предотвратить высыхание ткани. Хранить материал в таком виде возможно не более 48 ч в холодильнике при 4±2 °C.
- В процессе транспортировки не допускается замораживание биологического материала и перегревание свыше 30 °C.
- 2. Молекулярно-генетическое исследование полученного биологического материала с использованием диагностической автоматизированной системы для быстрой одновременной детекции ДНК МБТ и устойчивости МБТ к рифампицину включает следующие основные этапы:
- 2.1. Полученные образцы биологического материала извлекаются из контейнера.
- 2.2. Образцы гомогенизируются в стерильной фарфоровой ступке с помощью пестика с добавлением небольшого количества стерильного песка.
- 2.3. К образцу гомогенизированной ткани добавляется равный объем NaLC-NaOH (N-ацетил-L-цистеин с гидроокисью натрия) для разжижения пробы, ее деконтаминации, гомогенизации, и выдерживается экспозиция в течение 15–23 мин.

- 2.4. Следует убедиться, что крышка пробирки плотно закручена. Содержимое пробирки тщательно перемешивается (переворачивается несколько раз).
- 2.5. После звукового сигнала таймера пробирка помещается в штатив, добавляется фосфатный буфер до объема 50 мл.
- 2.6. Внутри БББ пробирка помещается в центрифужный стакан, крышки стаканов плотно закручиваются. При необходимости уравновешивания используются пробирки «фалькон» с водой или этиловым спиртом.
 - 2.7. Центрифужные стаканы устанавливаются в центрифугу.
- 2.8. Следует убедиться, что на центрифуге установлены значения 3700 грт (об/мин) (rcf 3000 g), температура 5 °C, время 15 мин.
 - 2.9. Пробирки центрифугируются при 3000 g в течение 15 мин.
- 2.10. Центрифужные стаканы открываются только внутри БББ. Пробирка с образцом извлекается, помещается в штатив. Открытие пробирки осуществляется спустя 5 мин после осаждения аэрозоля.
- 2.11. После открытия пробирки надосадочная жидкость осторожно удаляется в контейнер с воронкой, содержащий дезинфицирующее средство, не оставляя в пробирке ничего, кроме осадка. Необходимо убедиться, что осадок не был потерян во время сливания. Крышка пробирки плотно закрывается.
- 2.12. Если в процессе сливания надосадочной жидкости произошла контаминация внешней поверхности пробирки, ее необходимо протереть салфеткой, смоченной в дезинфицирующем средстве.
 - 2.13. Добавляется не более 2 мл фосфатного буфера.
- 2.14. Открывается крышка контейнера с образцом, пипеткой измеряется объем образца.
- 2.15. Пипеткой добавляется к образцу SR в соотношении 2:1 (2 части SR к 1 части образца).
- 2.16. После плотного закрытия контейнера крышкой, энергично встряхивается 10–20 раз (одно движение назад и вперед является одним встряхиванием) или встряхивается на вортексе в течение по крайней мере 10 с.
- 2.17. Образец инкубируется в течение 10 мин при комнатной температуре, а затем энергично встряхивается 10–20 раз или встряхивается на вортексе в течение по крайней мере 10 с.
- 2.18. Образец дополнительно инкубируется при комнатной температуре в течение 5 мин.
- 4.2.19. Картридж маркируется номером образца на боковой стенке картриджа. Не допускается постановка меток на крышке картриджа и нарушение 2D штрих-кода на картридже.
 - 2.20. Далее открывается крышка картриджа, затем контейнер с образцом.
- 2.21. При помощи входящей в набор пипетки разжиженный образец набирается до отметки на пипетке. Если объем образца недостаточный, он не может быть использован для анализа.
 - 2.22. Образец 2 мл помещается в камеру картриджа для образца.
- 2.23. Картридж загружается в прибор для молекулярно-генетического исследования в полном соответствии с инструкцией по эксплуатации прибора.

2.24. Интерпретация результатов молекулярно-генетического исследования нереспираторных образцов и гомогената ткани:

отрицательный результат: ДНК МБТ не обнаружена — дальнейшая тактика ведения пациента зависит от результатов обследования, посевов на МБТ и консультаций у специалистов. При необходимости пациент направляется на консультацию к фтизиатру;

положительный результат: ДНК МБТ обнаружена с устойчивостью к рифампицину (Rif+) (маркер множественно-лекарственно-устойчивого туберкулеза (МЛУ-ТБ) или без устойчивости к рифампицину (Rif-) — пациент направляется на консультацию в противотуберкулезный диспансер.

Заключение

Молекулярно-генетический метод с использованием диагностической автоматизированной системы для быстрой одновременной детекции ДНК МБТ и устойчивости МБТ к рифампицину рекомендован для выявления возбудителя ТБ с одновременным определением его устойчивости к рифампицину, которая является маркером МЛУ-ТБ.

Преимуществами данного метода являются минимальная вероятность контаминации и возможность его применения в «полевых условиях»: использование метода не требует оборудованной ПЦР-лаборатории и специально подготовленного персонала.

Для повышения эффективности диагностики внелегочного туберкулеза существует необходимость параллельного использования одновременно комплекса традиционных и ускоренных микробиологических и молекулярногенетических методов.

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

Использование молекулярно-генетического метода подразумевает строгое следование всем правилам организации и выполнения исследований в бактериологической лаборатории.

Ошибочные результаты при диагностике туберкулеза могут быть получены при нарушении условий взятия нереспираторных образцов и тканевого материала (несоблюдение стерильных условий), а также неинформативности биоптата из-за «погрешности» и неадекватного забора материала.

При точном соблюдении алгоритма исследования осложнения и ошибки исключены.