МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Заместитель Министра -

Главный государственный санитарный

врач Республики Беларусь

И.В. Гаевский

2015 г.

етистрационный № <u>010-1015</u>

МЕТОД ГЕНОТИПИРОВАНИЯ MYCOBACTERIUM TUBERCULOSIS

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: Государственное учреждение «Республиканский научно-практический центр пульмонологии и фтизиатрии»

АВТОРЫ:

к. м. н., доцент Слизень В.В. д.м.н., профессор Суркова Л.К. Залуцкая О.М.

Минск, 2015

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель министра
Л.Д. Пиневич
18.12.2015
Регистрационный № 010-1015

МЕТОД ГЕНОТИПИРОВАНИЯ *МҮСОВАСТЕКІИМ TUBERCULOSIS* С ПОМОЩЬЮ МУЛЬТИЛОКУСНОГО АНАЛИЗА ВАРИАБЕЛЬНОГО КОЛИЧЕСТВА ТАНДЕМНЫХ ПОВТОРОВ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: ГУ «Республиканский научно-практический центр пульмонологии и фтизиатрии»

АВТОРЫ: канд. мед. наук, доц. В.В. Слизень, д-р мед. наук, проф. Л.К. Суркова, О.М. Залуцкая

Настоящая инструкция по применению (далее — инструкция) предназначена для проведения генетического типирования *Mycobacterium tuberculosis* с помощью метода мультилокусного анализа вариабельного количества тандемных повторов (MIRU-VNTR) с целью совершенствования эпидемиологического мониторинга туберкулеза на территории Республики Беларусь.

Использование метода позволяет выявлять генотипы *M. tuberculosis*, оценивать сходство/различия *M. tuberculosis*, выделяемых из разных источников (от пациентов, внешней среды), что дает возможность определять источники инфекции, пути и факторы передачи возбудителей, устанавливать или исключать связь между отдельными случаями заболеваний, отличать случаи нового заболевания от реактивации туберкулеза, дифференцировать эпидемические вспышки, обеспечивать мониторинг противоэпидемического режима в лечебных организациях, отслеживать пути распространения инфекции.

Инструкция предназначена для специалистов клинической лабораторной диагностики, микробиологов организаций здравоохранения, противотуберкулезных организаций республиканского подчинения и противотуберкулезных организаций областного подчинения, научно-исследовательских институтов, сотрудников санитарно-эпидемиологических учреждений (областного, республиканского уровня), профильных кафедр (микробиологии и эпидемиологии) медицинских университетов и учреждений постдипломного медицинского образования.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

Исследования с помощью данного метода требуют наличия стандартного оборудования и расходных материалов для проведения ПЦР, а также оборудования для секвенирования, а именно:

- 1. Стандартные культуры M. tuberculosis H37Rv, клинические изоляты M. Tuberculosis.
- 2. Прибор для секвенирования/фрагментного анализа ДНК, использующий капиллярный электрофорез для определения размера ампликонов.
 - 3. Термоциклер для проведения ПЦР.
 - 4. Центрифуга на 14000 об./мин.
 - 5. Шейкер 250-3000 об./мин.
 - 6. Весы аналитические с точностью 0,01-0,1 мг.
 - 7. Твердотельный термостат.
 - 8. Автоклав.
- 9. Лабораторный пластик: пробирки пластмассовые микроцентрифужные объемом 1,5; 0,6; 0,2 мл, наконечники одноразовые пластиковые объемом 0,5–250; 200–1000 мкл с аэрозольным барьером и без него.
 - 10. Ламинарный бокс с бактерицидной лампой.
 - 11. Спирт этиловый 96 и 70%.
- 12. Отдельные наборы автоматических пипеток переменного объема для выделения ДНК и приготовления реакционной смеси, электрофореза (объем дозаторов 0,5–10; 5–50; 20–200; 200–1000 мкл).
 - 13. Холодильник на 2-8°C с морозильной камерой.

- 14. Вортекс-шейкер для микропробирок.
- 15. Источник постоянного тока для электрофореза.
- 16. Камера для горизонтального электрофореза.
- 17. Ультрафиолетовый трансиллюминатор для просмотра гелей.
- 18. Электроплитка или микроволновая печь для плавления агарозы.
- 19. Система регистрации изображений электрофоретических гелей или фотоаппарат.
- 20. Компьютер с программным обеспечением для управления капиллярным электрофорезом, хранения данных и анализа.
- 21. Автоматические дозаторы переменного объема 0,5–10; 2–20; 5–50; 20–200; 100–1000 мкл).
- 22. Олигонуклеотиды: зонды, меченные флюоресцентной меткой, и праймеры, синтезируемые в соответствие с таблицей 1.
 - 23. Одноразовые стерильные наконечники с фильтром 200; 1000 мкл.
 - 24. Одноразовые стерильные пластиковые пробирки 0,2; 0,5; 1,5 мл.
- 25. Набор реагентов для проведения ПЦР: 10xПЦР буфер (750 mM Tris-HCl (pH = 8,8 at 25°C), 200 mM (NH₄)₂SO₄, 0,1% (v/v) Tween 20), 25 mM MgCl₂, дНТФ (по 2,5 мМ дАТФ, дТТФ, дСТФ, дГТФ), раствор трегалозы 2,5 M, раствор бетаина 5M.
- 26. Флюоресцирующий стандарт молекулярного веса для капиллярного электрофореза с целью фрагментного анализа, меченный ROX и содержащий фрагменты от 47 до 946 п.о. (47, 51, 55, 82, 85 93 99, 126, 136, 262, 293, 317, 439, 557, 692, 695, 946).
- 27. Реагенты для капиллярного электрофореза (буфер для капиллярного электрофореза, гель POP4, высоко очищенный формамид).

Таблица 1 — Зонды и праймеры для генотипирования M. tuberculosis (из расчета на одну реакцию)

Название	Кол-во,	Последовательность олигонуклеотида,	Метка, 5'
олигонуклеотида	ПКМОЛЬ	5' → 3'	Ivicika, 3
MIRU 4; ETR D	10	GCGCGAGAGCCCGAACTGC	(FAM)
MIRU 4; ETR D -2	20	GCGCAGCAGAAACGCCAGC	
MIRU 26	20	TAGGTCTACCGTCGAAATCTGTGAC	
MIRU 26 -2	10	CATAGGCGACCAGGCGAATAG	(HEX)
MIRU 40	10	GGGTTGCTGGATGACAACGTGT	(TAMRA)
MIRU 40 -2	20	GGGTGATCTCGGCGAAATCAGATA	
MIRU 10	20	GTTCTTGACCAACTGCAGTCGTCC	
MIRU 10 -2	10	GCCACCTTGGTGATCAGCTACCT	(FAM)
MIRU 16	20	TCGGTGATCGGGTCCAGTCCAAGTA	
MIRU 16 -2	10	CCCGTCGTGCAGCCCTGGTAC	(HEX)
MIRU 31; ETR E	20	ACTGATTGGCTTCATACGGCTTTA	
MIRU 31; ETR E -2	10	GTGCCGACGTGGTCTTGAT	(TAMRA)
Mtub04	20	CTTGGCCGGCATCAAGCGCATTATT	
Mtub04-2	10	GGCAGCAGAGCCCGGGATTCTTC	(FAM)

ETR C	10	CGAGAGTGGCAGTGGCGGTTATCT	(HEX)
ETR C -	20	AATGACTTGAACGCGCAAATTGTGA	
ETR A	10	AAATCGGTCCCATCACCTTCTTAT	(TAMRA)
ETR A -2	20	CGAAGCCTGGGGTGCCCGCGATTT	
Mtub30	10	CTTGAAGCCCCGGTCTCATCTGT	(FAM)
Mtub30 -2	20	ACTTGAACCCCCACGCCCATTAGTA	
Mtub39	10	CGGTGGAGGCGATGAACGTCTTC	(HEX)
Mtub39 -2	20	TAGAGCGGCACGGGGGAAAGCTTA	
		G	
QUB-4156	20	TGACCACGGATTGCTCTAGT	
QUB-4156 -2	10	GCCGGCGTCCATGTT	(TAMRA)
QUB-11b	20	CGTAAGGGGATGCGGGAAATAGG	
QUB-11b -2	10	CGAAGTGAATGGTGGCAT	(FAM)
Mtub21	10	AGATCCCAGTTGTCGTCGTC	(HEX)
Mtub21 -2	20	CAACATCGCCTGGTTCTGTA	
QUB-26	10	AACGCTCAGCTGTCGGAT	(TAMRA)
QUB-26 -2	20	CGGCCGTGCCGGCCAGGTCCTTCCC	
		GAT	
Mtub29	10	GCCAGCCGCCGTGCATAAACCT	(FAM)
Mtub29 -2	20	AGCCACCCGGTGTGCCTTGTATGAC	

- 28. Реагенты для электрофореза в агарозном геле (стандартная агароза, 1хТАЕ или 1хТВЕ буфер, 10х раствор загрузочного красителя (40% сахароза, 0,17% ксилен цианол, 0,17% бромфенол голубой), ДНК-лестница 100 или 50 п.о., бромидом этидия (0,5 мкг/мл).
- 29. Реагенты для молекулярной биологии: 5 и 10% Chelex-100, 3M ацетат натрия, 0,2% твин-20, TE-буфер (50x, 100x).
 - 30. Одноразовые перчатки без талька.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

- 1. Эпидемиологическое расследование причин роста заболеваемости множественно и широко лекарственно устойчивым туберкулезом в Республике Беларусь.
- 2. Эпидемиологическое расследование причин формирования резистентности *M. tuberculosis* к противотуберкулезным лекарственным средствам в процессе лечения пациента в стационаре.
- 3. Выявление связанных случаев заражения туберкулезом от одного источника, расследование вспышек заболевания, обследование контактных лиц, выявление случаев внутрибольничного инфицирования множественно и широко лекарственно устойчивым туберкулезом.
- 4. Дифференциальная диагностика случаев нового инфицирования и реактивации туберкулезной инфекции.
- 5. Глобальный молекулярно-эпидемиологический мониторинг *M. tuberculosis* для формирования представлений о микроэволюции возбудителя и его филогеографии.

ОПИСАНИЕ ТЕХНОЛОГИИ ИСПОЛЬЗОВАНИЯ МЕТОДА

Диагностические критерии принадлежности *M. Tuberculosis* к идентичным/различным генетическим типам

- 1. Изоляты M. tuberculosis относятся к идентичным генетическим типам при выполнении двух условий:
- а) идентичности MIRU-VNTR профилей, что сопровождается совпадением количества VNTR повторов во всех 15 локусах;
- б) совпадении спектра фенотипической чувствительности/резистентности и типа мутаций резистентности к противотуберкулезным лекарственным средствам.
- 2. Изоляты M. tuberculosis относятся к разным генетическим типам при выполнении одного из условий:
- а) различии MIRU-VNTR профилей, что сопровождается несовпадением количества повторов в одном из 15 VNTR локусов;
- б) несовпадении спектра фенотипической чувствительности/резистентности и спектра мутаций резистентности к противотуберкулезным лекарственным средствам.

Этапы метода:

- 1 этап выделение ДНК *M. tuberculosis* из биологического материала или из чистых культур;
- 2 этап ПЦР для генотипирования *M. tuberculosis* по количеству VNTR повторов в 15 локусах;
 - 3 этап капиллярный электрофорез для оценки размера VNTR-локусов;
- 4 этап анализ результатов: определение количества VNTR повторов, составление числового кода идентифицируемого генотипа, идентификация генотипа.

1 этап — выделение ДНК М. tuberculosis из биологического материала или из чистых культур

Проводят выделение ДНК из штаммов чистых культур *М. tuberculosis* и/или мокроты пациентов с содержанием микобактерий при окраске по Циллю—Нильсену на 3+. Используется стерильная одноразовая пластиковая посуда (пробирки, наконечники), которые после применения удаляются в контейнер с дезинфицирующим раствором для обезвреживания на 1 ч. При проведении ПЦР работают в одноразовых перчатках.

Материал для исследования — мокрота (с содержанием *M. tuberculosis* на 3+ при микроскопии по Цилю–Нильсену), чистые культуры микобактерий.

1.1. Выделение ДНК из мокроты

К исследуемому материалу (мокрота) добавляют муколитик в объеме, равном объему пробы, после чего центрифугируют при 12000 об./мин в течение 15 мин (этап проводится в соответствии с «Руководством по лабораторной диагностике туберкулеза», приказ МЗ РБ №377 от 22.03.2013).

Маркируют пробирки на 1,5 мл в соответствии с номерами образцов исследуемой мокроты. Вносят в них 250 мкл стерильной осаждающей суспензии — 2хТАЕ буфер с 10% Chelex-100.

Используя наконечник с аэрозольным барьером, набирают осадок биологического материала объемом 250 мкл и вносят в пробирку с осаждающей

суспензией, после чего тщательно перемешивают при помощи вортекса.

Пробы, внесенные в осаждающую суспензию, нагревают на водяной бане при 98°C 30 мин либо в твердотельном термостате при 95°C 20 мин.

После температурной обработки пробы центрифугируют при 12000 об./мин 15 мин.

Полученную надосадочную жидкость объемом 400 мкл вносят в чистые пробирки (объемом 1,5 мл), которые предварительно нумеруют в соответствие с номерами образцов биологического материала. В пробирки вносят 80 мкл раствора для преципитации ДНК — 3М ацетат натрия (рН 5,2) — и размешивают на вортексе, после чего вносят 800 мкл охлажденного в морозилке спирта этилового 96%, тщательно перемешивают с помощью вортекса, помещают в морозильник на 30 мин, если лаборатория оснащена ультрацентрифугой с охлаждением, то выдерживание образцов в морозильнике в течение 30 мин можно опустить.

Пробы центрифугируют при 12000 об./мин 40 мин при 4°С; после чего супернатант выливают из пробирки путем ее переворачивания, остатки стекающей жидкости удаляют путем промокания на волокнистой и впитывающей бумаге.

Добавляют 1,0 мл 70% этанола и тут же сливают его, перевернув пробирку. Импульсно откручивают пробирку (20 с, 12000 об./мин) на микроцентрифуге или вортекс-центрифуге для осаждения остатков спирта. Тщательно удаляют наконечниками остатки спирта из пробирок.

Подсушивают содержимое пробирок в естественных условиях, альтернативно содержимое подсушивают при 40–45°C в твердотельном термостате в течение 1 мин, это необходимо для испарения остатка спирта. На этой стадии избегают пересушивания осадка, иначе происходит его коагуляция и он не растворяется на следующем этапе. Если в пробирке на дне видна жидкость, то необходимо увеличить длительность подсушивания еще на 1–2 мин. После этой стадии на дне пробирок может формироваться видимый осадок. В случае низкой концентрации ДНК видимый глазу осадок может отсутствовать, что не является основанием для отклонения проб от дальнейших исследований.

Добавляют 90 мкл раствора ресуспендирующего — 1хТЕ буфер с 0,2% Твином-20, инкубируют пробирки 5–10 мин при 40–45°С. Тщательно перемешивают на вортексе. Полученный раствор ДНК используют для постановки ПЦР.

1.2. Выделение ДНК из чистых культур микобактерий

Маркируют пробирки на 1,5 мл в соответствии с номерами образцов исследуемой мокроты. Вносят в них 250 мкл стерильной осаждающей суспензии — 1хТАЕ буфера с 5% Chelex-100.

Вносят в пробирки культуры исследуемых микобактерий в количестве 1-го бактериологического шпателя.

Пробы, внесенные в осаждающую суспензию, нагревают на водяной бане при 98°C 30 мин либо в твердотельном термостате при 95°C 20 мин.

После температурной обработки содержимое пробирок центрифугируют при 12000 об./мин 20 мин.

Полученную надосадочную жидкость переносят в новые пробирки, которые маркируют соответствующим образом.

1.3. Хранение экстрагированной ДНК

До дальнейших исследований экстрагированную ДНК хранят в течение суток при $+4\pm2^{\circ}$ С либо месяц при температуре -16° С и ниже. Перед исследованием ДНК тщательно ресуспендируют на вортексе (20 с). Пробы с нерастворимым осадком отклоняют и не используют для дальнейших исследований.

2 этап — ПЦР для генотипирования *M. tuberculosis* по количеству VNTR повторов в 15 локусах

2.1. Приготовление ПЦР-реакционной смеси

С целью генотипирования *М. tuberculosis* методом ПЦР для каждой пробы ДНК готовят пять реакционных смесей, состав которых приведен в таблице 2. При исследованиях нескольких проб ДНК для каждой из пяти типов реакционных смесей готовят общую реакционную смесь, в которую вносят каждый из ингредиентов, приведенных в таблице 2, в объеме, который рассчитывают путем умножения на N+1, где N — количество проб ДНК в исследовании. В состав реакционных смесей входят праймеры и зонды (таблица 1), которые синтезируются организацией, лицензированной для производства олигонуклеотидов. Праймеры и зонды необходимы для выявления различий в локусах: 1) первая реакционная смесь — MIRU10, MIRU46, MIRU40, MIRU4 (ETR D); 2) вторая реакционная смесь — Mtub04, ETR C, ETR A; 4) четвертая реакционная смесь — Mtub30, Mtub39, QUB-4156; 5) пятая реакционная смесь — QUB-11b, Mtub21, QUB-26.

Исследуемую экстрагированную ДНК в количестве 5–10 мкл вносят в 40–45 мкл реакционной смеси.

Один из амплифицируемых образцов должен быть контрольным и содержать ДНК *M. tuberculosis* H37Rv-Ra; MIRU-VNTR профиль этих микроорганизмов является стандартным.

Таблица 2 — Состав пяти реакционных смесей для генотипирования *M.tuberculosis* с помощью метода

	Компоненты	Реакционная	Реакционная	Реакционная	Реакционная	Реакционная
	Компоненты	смесь 1	смесь 2	смесь 3	смесь 4	смесь 5
3	Праймеры и зонды	MIRU26	MIRU 10	Mtub04	Mtub30	QUB-11b
	по 20 пкмоль/реакцию	MIRU40	MIRU 16	ETR C	Mtub39	Mtub21
		MIRU 4; ETR D	MIRU 31; ETR E	ETR A	QUB-4156	QUB-26
4	Зонды	MIRU26-2	MIRU 10 -2	Mtub04 -2	Mtub30-2	QUB-11b – 2
	по 10 пкмоль/реакцию	MIRU40-2	MIRU 16 -2	ETR C -2	Mtub39-2	Mtub21 -2
		MIRU 4; ETR D -2	MIRU 31; ETR E -2	ETR A -2	QUB-4156-2	QUB-26 - 2
5	MgCl ₂ (25 mM)	5 мкл	5 мкл	5 мкл	5 мкл	5 мкл
6	дНТФ (2 мМ)	5 мкл	5 мкл	5 мкл	5 мкл	5 мкл
7	10X Taq буфер с (NH ₄) ₂ SO ₄	5 мкл	5 мкл	5 мкл	5 мкл	5 мкл
8	Бетаин, 5М	5 мкл	5 мкл	5 мкл	5 мкл	5 мкл
9	Трегалоза, 2,5 М	5 мкл	5 мкл	5 мкл	5 мкл	5 мкл
10	Вода деионизованная	Add 50 мкл	Add 50 мкл	Add 50 мкл	Add 50 мкл	Add 50 мкл
11	Изучаемая ДНК	5-10 мкл	5–10 мкл	5-10 мкл	5-10 мкл	5-10 мкл
12	Таq полимераза (5 ед./мкл)	0,3 мкл	0,3 мкл	0,3 мкл	0,3 мкл	0,3 мкл

2.2. Амплификация

Пробы размещают в приборе для амплификации ДНК и программируют его для следующего режима ПЦР: 95° C — 15 мин, 40 циклов (1 мин — 94° C, 1 мин — 59° C и 1 мин 30 с — 72° C), 72° C — 10 мин, 4° C $\rightarrow \infty$.

2.3. Детекция продуктов амплификации

Результаты амплификации визуализируют методом горизонтального электрофореза в 2,7% агарозном геле, приготовленном на 1хТАЕ или 1хТВЕ буфере, с бромидом этидия (0,5 мкг/мл).

Пробы в объеме 12–15 мкл вместе с загрузочным красителем в объеме 2 мкл вносят в лунки в агарозном геле. При этом 5 реакционных смесей, выявляющих различия в VNTR локусах для одной ДНК-пробы, вносят последовательно в пять соседних лунок. В каждом ряду лунок предусматривают раскапывание маркера молекулярного веса ДНК — 50 или 100 п.о., для чего маркер в объеме 10 мкл вместе с 2 мкл загрузочного красителя вносят в одну из лунок.

Проводят электрофорез в 1хТАЕ или 1хТВЕ буферном растворе, используя режим электрофореза — 50 мA, 100 B, 1 ч, после чего электрофорез продолжают при 70мA, 140 B, 2 ч.

2.4. Учет результатов электрофореза в агарозном геле

В положительных случаях в каждой из пяти реакционных смеси образуется по 3 продукта амплификации. При этом размер ампликонов может варьировать и зависит от количества VNTR повторов в локусе. Визуально, используя маркер молекулярного веса 50 или 100 п.о., определяют размер ДНК-фрагментов, образовавшихся в каждой из реакционных смесей (должно быть по три в каждой из пробирок).

3 этап — капиллярный электрофорез для оценки размера VNTR-локусов

Вносят 2 мкл продуктов амплификации в 20 мкл формамида (для молекулярной биологии). В смесь добавляют 0,8/1 мкл стандарта молекулярного веса для фрагментного анализа с помощью капиллярнрого электрофореза, меченых флюорофором ROX (соответственно).

Для денатурации образцы нагревают при 98°C 2 мин.

Денатурированные пробы в объеме 10–15 мкл вносят в стрипированные пробирки либо планшеты для ПЦР.

В секвенатор устанавливают капилляр размером 36 см и заполняют его гелем РОР-4.

Прибор для секвенирования программируют для фрагментного анализа и задают следующие настройки для капиллярного электрофореза:

- температура электрофореза 60°C;
- напряжение инъекции 5 кВ;
- время инъекции 22 c;
- напряжение электрофореза 15 кВ;
- время электрофореза 40 мин.

В сервисной программе секвенатора указывают модуль работы прибора, предназначенный для фрагментного анализа с использованием геля POP-4, а также указывают фильтр, предназначенный для учета одновременной флюоресценции красителей FAM, HEX, TAMRA, ROX (фильтр D или E).

4 этап — анализ результатов: определение количества VNTR повторов, составление числового кода идентифицируемого генотипа, идентификация генотипа

Результаты капиллярного электрофореза учитывают с использованием программы PeakScanner 1.0, GenMarker 2.6.3.

В программу учета результатов вводят размер фрагментов стандарта: ROX — 47, 51, 55, 82, 85, 93, 99, 126, 136, 262, 293, 317, 439, 557, 692, 695 и 946 п. о.

Программа автоматически определяет размеры фрагментов в каждой реакционной смеси на 4 каналах флюоресценции — FAM, HEX, TAMRA — путем сравнения со стандартом молекулярного веса ДНК-фрагментов, флюоресценция которых регистрируется на канале ROX.

Для каждого исследуемого образца получается набор из 15 фрагментов. Например, для штамма 1 (таблица 3) профиль размеров VNTR-локусов составляет 329-516-438-749-724-651-420-324-639-740-446-479-274-486-263 п.о., для штамма 2 — 329-516-540-643-724-757-495-382-741-681-446-479-481-930-377 п.о. (таблица 3). VNTR-локусы для штаммов 1 и 2 приведены в следующей последовательности: MIRU04-MIRU40-MIRU26-MIRU10-MIRU16-MIRU31-ETRA-ETRC-Mtub04-QUB4156-MTUB39-MTUB30-QUB11b- QUB26-MTUB21.

Таблица 3 — Пример определения размера (п.о.) VNTR-локусов и на основании этого количества VNTR-повторов у двух штаммов M. tuberculosis

Штамм	Локусы	MIRU04	MIRU40	MIRU26	MIRU10	MIRU16	MIRU31	ETRA	ETRC	Mtub04	QUB4156	MTUB39	MTUB30	QUB11b	QUB26	MTUB21	Генотип
MTB-1538	Количество повторов Размер фрагмента,	329	3 516		5 749		3 651	3	3 324		3 740	3		3 274		3 263	Haarlem
	нт Количество повторов		3		3						2			6		5	
(2)	Размер фрагмента, нт	329	516	540	643	724	757	495	382	741	681	446	479	481	930	377	Beijing

В качестве контроля используют M. tuberculosis H37Rv-Ra. Размер ПЦР-фрагментов для этого штамма для каждого из VNTR-локусов и количество повторов в них приведен в таблице 4.

Таблица 4 — Результат постановки контроля *M. tuberculosis* H37Rv-Ra: профиль

размера VNTR-локусов и профиль количества повторов

Локус	MIRU 02	MIRU 04	MIRU 10	MIRU 16	MIRU 20	MIRU 23
H37Rv-Ra генотип	2	3'	3	2	2	6
Локус Н37Rv-Ra	MIRU 24	MIRU 26	MIRU 27	MIRU 31	MIRU 39 2	MIRU 40
локус Н37Rv-Ra	Mtub04	ETRC 4	Mtub21	Qub11b 5	ETRA 3	Mtub29
генотип Локус H37Rv-Ra	Mtub30	ETRB	Mtub34	Mtub39	QUB-26	QUB4156
генотип	2	3	3	3	3	2

Количество повторов в каждом из 15 VNTR локусов определяют на основании размера ПЦР-фрагментов согласно таблице 5. Для каждой из генотипируемых культур *M.tuberculosis* получается числовой код из 15 цифр.

Например, для штамма 1 профиль количества повторов VNTR-локусов составляет 2-3-5-5-3-3-3-3-2-3-3-4-3-3-3, а для штамма 2 — 2-3-5-3-3-5-4-4-4-2-3-4-6-7-5 (таблица 3). Количество повторов в VNTR-локусах для штаммов 1 и 2 приведено в следующей последовательности: MIRU04-MIRU40-MIRU26-MIRU10-MIRU16-MIRU31-ETRA-ETRC-Mtub04-QUB4156-MTUB39-MTUB30-QUB11b-QUB26-MTUB21.

Для идентификации генотипа *М. tuberculosis* необходимо сравнить профиль количества VNTR-повторов в 15 локусах с базой данных, отражающей профили повторов в 15 VNTR локусах для известных генотипов. База данных MIRU-VNTR профилей различных генотипов *М. tuberculosis* приведена в таблице 6. Используя таблицу 6, по числовому коду, отражающему количество VNTR повторов в каждом из 15 локусов, определяют генотип. Например, штамм 1, VNTR профиль которого 2-3-5-3-3-3-3-2-3-3-4-3-3 (таблица 3), может быть отнесен к генотипу Haarlem, а штамм 2 с VNTR-профилем 2-3-5-3-3-5-4-4-4-2-3-4-6-7-5 — к генотипу Beijing.

Таблица 5 — Соотношение между размером ПЦР-фрагментов (п.о.) и количеством VNTR повторов у *M. tuberculosis*

Локус	04	04	26	10	16	31	7	C	_	20	89	95	63b	97	21
	MIRU	MIRU40	MIRU	MIRU	MIRU	MIRU	Mtub04	ETRO	ETRA	Mtub30	Mtub39	QUB4156	QUB2163b	97and	Mtub2
Метка	FAM	HEX	TET	FAM	HEX	TET	FAM	HEX	TET	FAM	HEX	TET	FAM	TET	HEX
0	175	354	285	482	565	492	537	171	195	252	272	563	67	153	116
1	252	408	336	537	618	545	588	208	270	305	330	622	136	264	149
2	329	462	387	590	671	598	63	266	345	363	388	681	205	375	206
3	406	516	438	643	724	651	690	324	420	421	446	740	274	486	263
4	483	570	489	66	777	704	741	382	495	479	504	799	343	597	320
5	560	624	540	749	830	757	792	440	570	537	562	858	412	708	377
6	637	678	591	802	883	810	843	498	645	595	620	917	481	819	434
7	714	732	42	855	936	863	894	556	720	653	678	976	550	930	491
8	791	786	693	908	989	916	945	614	795	711	736	1035	619	1041	548
9	868	840	744	961	1042	969	996	672	870	769	794	1094	688	1152	605
10	945	894	795	101	1095	1022	1047	730	945	827	852	1153	757	1263	662
11	1022	948	846	1067	1148	1075	1098	788	1020	885	910	1212	826	1374	719
12	1099	1002	897	1120	1201	1128	1149	846	1095	943	968	1271	895	1485	776
13	1176	1056	948	1173	1254	1181	1200	904	1170	1001	102	1330	964	1596	833
14	123	1110	99	1226	1307	1234	1251	962	1245	1059	1084	1389	1033	1707	890
15	1330	1164	1050	1279	1360	1287	1302	1020	1320	1117	1142	1448	1102	1818	947

Таблица 6 — Таблица идентификации генотипов микобактерий: генотипы микобактерий и их MIRU-VNTR профили

		ии и их тут					Р	T														
e e	Вид	Генотип	MIRU26	MIRU40	MIKU/EIK D	MIRU10	MIRU16	MIRU31	Mtub04	ETRC	ETRA	Mtub30	Mtub39	Qub4156	Qub11b	Mtub21	Qub26	HNI	$\overline{ ext{MS}}$	EMB	RMP	PZA
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
10264/03	МТБ	TUR	1	2	1	5	1	3	4	4	3	4	3	3	2	2	6	S	S	S	S	S
10438/01	МТБ	Cameroon	5	3	2	3	2	3	2	4	4	2	a	2	3	3	4	S	S	S	S	S
10439/01	МТБ	Cameroon	5	3	2	3	3	3	2	4	4	2	d	2	6	3	5	S	S	S	S	S
10445/01	МТБ	Cameroon	5	3	2	3	3	3	2	4	4	2	8	0	6	3	4	S	S	S	S	S
10446/01	МТБ	Cameroon	4	3	2	3	2	3	2	4	3	2	9	2	4	3	5	S	S	S	S	S
10459/03	МТБ	NEW-1	5	3	2	2	3	3	1	4	3	2	3	2	3	3	7	S	S	S	S	S
10469/01	МТБ	Ghana	4	5	2	3	3	3	2	3	3	4	3	1	3	4	6	r	S	r	S	S
10470/01	МТБ	Ghana	4	6	2	3	3	3	2	3	3	4	3	1	3	4	6	S	S	S	S	S
10481/01	МТБ	Cameroon	5	3	2	3	3	3	2	4	2	2	9	2	4	3	4	S	S	S	S	S
10486/01	МТБ	Ghana	4	6	2	3	3	3	2	3	3	4	3	1	3	4	6	S	S	S	S	S
10493/01	МТБ	Ghana	4	6	2	3	3	4	2	3	3	4	3	1	4	3	6	r	r	S	S	S
10515/01	МТБ	Ghana	4	6	2	3	3	3	2	3	3	4	3	1	3	4	6	r	r	S	S	S
10529/03	МТБ	TUR	1	2	1	5	1	3	4	4	3	4	3	3	2	2	6	S	S	S	S	S
10581/03	МТБ	LAM	5	4	2	4	3	2	1	2	2	1	2	2	2	3	5	S	S	S	S	S
11046/04	МТБ	S	5	4	3	3	3	3	3	4	3	2	3	2	4	1	9	?	?	?	?	?
11051/03	МТБ	EAI	2	3	4	4	2	5	2	4	7	2	4	1	2	5	5	S	S	S	S	S
11313/03	МТБ	TUR	1	2	1	5	1	3	4	4	3	4	3	3	2	2	6	S	S	S	S	S
11359/03	МТБ	EAI	2	4	5	5	3	5	2	4	8	2	6	1	b	3	6	S	S	S	S	S
11443/99	M. caprae	Caprae	5	2	3	5	4	5	3	7	4	4	1	3	4	2	3	?	?	?	?	?
12591/02	МТБ	NEW-1	6	3	2	2	3	3	2	4	3	2	4	2	2	5	7	S	S	S	S	S
12637/02	МТБ	Haarlem	5	3	2	5	3	3	2	3	2	4	3	3	4	3	7	S	S	S	S	S
12778/03	МТБ	EAI	2	3	6	4	2	5	2	4	7	2	5	1	2	5	6	S	S	S	S	S
1290/03	M. bovis	Bovis	1	2	3	2	1	3	2	5	6	3	2	1	3	3	5	?	?	?	?	?
1417/02	МТБ	Cameroon	5	3	2	3	3	3	2	4	4	2	6	2	5	3	5	S	S	S	S	S
1428/02	МТБ	Cameroon	5	3	2	3	3	3	2	4	4	2	4	2	4	3	5	S	S	S	S	S
1438/02	МТБ	Ghana	4	5	2	3	3	3	2	3	3	4	3	1	3	4	6	S	S	S	S	S
1479/00	M. microti		2	2	4	5	6	1	3	5	8	4	3	3	6	3	9	?	?	?	?	?
1521/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	4	2	3	2	2	3	6	S	S	S	S	S
1571/99	МТБ	UgandaI	5	3	2	3	2	4	1	5	4	2	2	2	2	3	7	S	S	S	S	S
1601/01	M. bovis	Bovis	5	2	3	2	3	3	2	3	2	4	2	1	2	3	5	S	S	S	S	r
1647/99	МТБ	UgandaII	4	3	2	3	3	3	2	5	4	2	3	2	2	3	7	S	S	S	S	S
1657/03	МТБ	URAL	1	2	2	9	2	3	4	4	4	4	3	3	2	3	8	S	S	S	S	S
1694/00	M. caprae	Caprae	5	2	2	5	5	5	2	5	7	4	1	3	3	3	3	S	S	S	S	S
1696/00	M. caprae	Caprae	4	2	3	6	3	5	2	5	6	4	1	3	5	3	3	S	S	S	S	S
1797/03	МТБ	EAI	2	3	5	4	3	6	2	4	6	1	6	1	3	6	6	S	S	S	S	S
1805/02	МТБ	Delhi/CAS	3	3	2	4	4	5	4	2	4	2	3	4	2	2	5	S	S	S	S	S
1850/03	МТБ	LAM	4	1	2	4	2	3	4	4	2	1	3	2	2	3	3	S	S	S	S	S
1897/04	МТБ	S	5	4	3	3	3	3	3	5	3	2	3	2	3	1	2	?	?	?	?	?
2111/99	МТБ	UgandaI	5	3	2	3	2	4	1	5	4	2	2	2	3	3	4	S	S	S	S	S
2151/03	МТБ	S	5	4	3	3	3	3	3	4	4	2	7	2	2	1	7	S	S	S	S	S
2169/99	МТБ	UgandaI	4	2	2	3	2	2	1	4	4	2	2	2	3	3	7	S	S	S	r	S

2173/99	МТБ	Handal	1	2	2	3	2	1	1	5	4	2	2	2	2	3	3					- C
		UgandaI	4					4	2					-				S	S	S	S	S
2176/99	МТБ	UgandaII	4	1	2	3	3	3	2	5	4	2	3	2	2	3	6	S	S	S	S	S
2191/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	4	2	4	2	2	3	7	S	S	S	S	S
2197/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	3	2	3	2	2	3	3	S	S	S	S	S
2201/99	МТБ	UgandaI	5	2	2	3	3	4	3	5	4	2	2	2	2	3	6	r	r	S	r	S
2211/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	4	2	3	2	2	3	7	S	S	S	S	S
2224/99	МТБ	UgandaI	5	2	2	3	3	5	3	5	4	2	3	2	3	2	6	S	r	S	S	S
2253/99	МТБ	UgandaII	4	4	2	3	3	4	2	5	4	2	3	2	2	3	5	S	S	S	S	S
2258/03	МТБ	TUR	1	2	1	5	1	3	4	4	3	4	3	3	2	3	7	S	S	S	S	S
2263/99	МТБ	UgandaI	4	3	2	3	2	4	1	5	4	2	2	2	3	3	4	S	S	S	S	S
2307/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	4	2	3	2	2	3	6	S	S	S	S	S
2318/06	МТБ	S	5	5	3	2	3	3	4	4	3	2	3	2	5	1	8	S	S	S	S	S
2319/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	4	2	3	2	2	3	7	r	S	r	r	S
2329/99	МТБ	UgandaI	3	3	2	3	3	2	2	5	4	2	3	2	3	2	7	S	S	S	S	S
2331/99	МТБ	UgandaI	5	2	2	3	2	4	1	5	4	2	2	2	3	3	4	S	S	S	S	S
2333/99	МТБ	UgandaI	5	2	2	3	2	4	1	5	4	2	2	2	3	3	4	S	S	S	S	S
2336/02	МТБ	Haarlem	5	3	2	5	3	3	1	3	3	4	3	3	3	3	5	S	S	S	S	S
2379/99	МТБ	UgandaII	4	3	2	3	3	4	2	5	3	2	3	2	2	3	7	S	r	S	S	S
2570/02	МТБ	Ghana	4	5	2	3	3	3	3	3	3	4	3	1	3	4	6	S	S	S	S	S
2582/02	МТБ	Ghana	4	5	2	3	3	3	2	3	3	4	3	1	4	4	6	S	r	S	S	S
2597/02	МТБ	Ghana	4	5	2	3	3	3	2	3	3	4	3	1	3	4	6	S	S	S	S	S
2637/02	МТБ	Delhi/CAS	7	3	2	5	5	5	5	2	4	2	2	4	2	4	8	S	S	S	S	S
2679/03	МТБ	URAL	1	2	3	9	2	3	3	4	5	4	3	3	1	3	8	s	s	s	s	S
282/04	МТБ	S	3	6	3	3	3	3	3	4	4	2	3	0	5	1	5	?	?	?	?	?
287/99	M. microti	vole	2	2	4	5	6	1	3	5	9	4	3	3	6	3	9	?	?	?	?	?
3040/99	M. canetti	Canetti	7	6	1	3	3	6	3	3	a	5	4	1	b	2	6	?	?	?	?	?
3041/99	M. canetti	Canetti	3	8	2	3	2	4	3	6	a	2	2	1	b	3	5	?	?	?	?	?
3103/03	МТБ	Haarlem	5	3	2	5	3	3	2	3	3	4	3	3	5	3	7	S	S	S	S	S
3243/02	МТБ	Beijing	7	3	2	3	3	5	4	4	4	4	3	2	3	5	7	r	r	r	r	S
3256/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	5	8	r	r	r	r	s
3262/02	МТБ	LAM	5	4	2	4	3	2	3	2	2	1	2	2	2	3	6	r	r	r	s	S
3270/04	МТБ	S	5	6	3	3	2	3	2	4	4	2	1	2	2	1	9	?	?	?	?	?
3277/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	5	8	r	r	r	S	r
3309/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	5	8	r	r	r	r	S
3310/02		LAM	4	5	2	4	3	2	4	2	2	1	2	2	2	3	6	r	r	r	r	S
3329/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	5	7	r	r	r	r	S
3342/02	МТБ	Haarlem	5	3	2	5	3	3	2	3	3	4	3	3	3	1	6	r	S	r	r	S
3364/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	5	8	r	r	S	S	S
3686/03	МТБ	Haarlem	5	2	2	4	3	3	2	3	3	4	4	3	4	3	6	S	S	S	S	S
3995/03	МТБ	LAM	5	4	2	4	3	3	3	2	2	2	1	2	3	3	4	S	S	S	S	S
4058/03	МТБ	EAI	2	4	5	4	3	4	2	4	6	1	4	1	3	6	5	S	S	S	S	S
4130/02	МТБ	Haarlem	5	3	2	5	3	3	2	3	3	4	3	3	4	3	5	S	S	S	S	S
417/01	M. microti	llama	2	2	6	5	6	1	3	5	9	4	2	3	9	3	9	?	?	?	?	7
4192/03	МТБ	Haarlem	5	3	2	2	3	3	2	3	3	4	3	3	6	3	6	s	S	s	S	S
4217/02	МТБ	Haarlem	5	2	2	4	3	3	2	3	3	4	4	3	6	3	7	?	?	?	?	?
4217/02	M. bovis	Bovis	5	2	3	2	3	2	1	3	6	4	2	1	2	3	5	?	?	?	?	?
4412/04	м. воль МТБ	X	5	5	2	4	3	3	2	3	3	4	6	3	4	4	8					
4412/04	МТБ	LAM	5	6	2	4	3	2	3	4	1	1	2	2	1	3	6	S	S	S	S	S
4428/02	МТБ	LAM	4	5	2	_	3	2	3	2	2	1	2	2	2	3	5	r	S	S	r	S
			7			4						1	+					r	r	S	S	r
4436/02	МТБ	Beijing	/	3	2	3	3	5	4	4	4	4	3	2	6	5	7	r	r	S	S	S

4445/02	МТБ	Daiiina	5	2	2	3	3	5	1	1	3	1	3	2	6	5	8	T	I	I	I	
		Beijing		3					4	4		4			6		-	r	r	r	r	S
4498/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	6	8	r	r	S	S	S
4499/02	МТБ	Beijing	5	3	2	3	3	5	4	4	4	4	3	2	6	3	8	?	r	?	?	?
4526/04	МТБ	S	4	5	3	3	2	3	3	4	4	2	3	2	3	1	8		•			
4850/03	МТБ	EAI	2	4	5	3	3	3	2	4	6	1	4	1	3	6	5	S 2	S	S	S 2	S 2
4993/02	МТБ	Haarlem	5	3	2	5	3	3	3	3	3	4	3	3	4	3	5	•			٠	•
5346/02	M. bovis	Bovis	5	2	2	2	3	3	2	3	3	4	2	1	3	3	4	?	?	?	?	?
5357/02	МТБ	Ghana	4	7	2	3	3	3	2	3	3	5	3	1	4	4	6	r	S	S	S	S
5358/99	M. caprae	Caprae	4	2	3	6	2	5	4	5	5	4	1	3	4	3	3	S	S	S	S	S
5390/02	МТБ	Cameroon	5	3	2	3	2	3	2	4	3	2	8	3	6	3	5	S	S	S	S	S
5400/02	МТБ	Cameroon	5	3	2	4	3	3	2	4	3	2	7	2	5	3	5	S	S	S	S	S
5429/02	МТБ	Cameroon	5	3	2	3	3	3	2	4	4	2	a	2	5	3	5	S	S	S	S	S
6006/03	МТБ	EAI	2	3	4	4	3	4	2	2	8	2	5	1	8	3	4	S	S	S	S	S
6411/05	МТБ	S	5	5	3	3	3	3	3	4	3	2	4	0	4	1	4	S	S	S	S	S
6424/05	МТБ	S	4	4	3	3	3	3	3	4	4	2	3	2	3	1	8	?	?	?	?	?
6427/01	МТБ	Delhi/CAS	7	3	2	5	4	5	5	2	4	2	2	4	2	4	8	r	r	S	r	S
6538/03	МТБ	EAI	2	3	5	4	3	5	2	4	6	1	4	1	3	4	6	S	S	S	S	S
6946/03	МТБ	Haarlem	5	2	2	4	3	3	2	3	3	4	4	3	6	3	7	S	S	S	S	S
6997/99	M. microti	llama	2	2	6	5	6	1	3	5	4	4	2	3	2	3	6	?	?	?	?	?
7011/02	M.	Seal	2	2	5	6	4	3	3	4	9	4	3	0	9	4	7	S	S	S	S	S
	pinnipedii																					
7072/01	M. bovis	Bovis	6	2	3	2	3	3	2	5	5	4	2	1	4	3	6	?	?	?	?	?
7140/99	M. caprae	Caprae	5	2	2	5	4	5	3	6	4	4	1	3	4	2	3	?	?	?	?	?
7190/03	МТБ	EAI	2	3	5	4	4	5	2	4	6	2	5	1	9	6	6	?	?	?	?	?
742/06	МТБ	S	5	5	3	2	3	3	4	4	3	2	3	2	5	1	8	?	?	?	?	?
7507/01	МТБ	Delhi/CAS	9	3	2	6	4	4	4	2	4	2	3	4	2	5	8	S	r	S	S	S
751/01	M. bovis	Bovis	6	2	3	2	3	3	2	5	5	4	2	1	4	3	6	S	S	S	S	r
7540/01	M. bovis	Bovis	5	2	3	2	3	3	0	5	4	4	2	1	4	1	4	?	?	?	?	?
7618/99	M. caprae	Caprae	5	2	4	6	4	6	3	3	5	4	1	2	4	1	2	?	?	?	?	?
7739/01	<i>M</i> .	Seal	2	2	5	6	4	3	3	4	9	4	3	0	9	4	7	S	S	S	S	S
	pinnipedii																					
7746/01	МТБ	Delhi/CAS	7	3	2	6	2	5	3	2	4	2	3	2	2	4	2	S	r	S	S	S
7747/01	МТБ	Delhi/CAS	4	3	2	5	4	5	5	2	4	2	2	4	2	4	7	S	S	S	S	S
7936/01	МТБ	Delhi/CAS	7	3	2	5	2	5	5	2	4	2	2	4	2	4	8	s	s	s	S	S
7955/03	МТБ	S	5	4	3	3	2	3	3	4	4	2	3	2	4	1	a	s	s	s	S	S
7968/03	МТБ	LAM	5	3	2	4	3	3	3	2	2	2	1	2	4	3	4	s	s	s	s	S
8078/03	МТБ	LAM	5	4	2	4	3	2	3	2	2	1	2	2	2	3	6	S	S	S	S	S
8217/02	M. bovis	Bovis	4	2	3	2	3	3	2	5	4	4	2	1	3	3	3	?	?	?	?	?
8260/01	МТБ	Delhi/CAS	8	3	2	5	4	4	4	2	4	2	3	4	2	4	8	S	r	S	S	s
8319/99	M. caprae	Caprae	4	2	3	7	3	5	2	5	4	4	1	3	5	3	3	?	?	?	?	?
8431/03	МТБ	URAL	1	2	2	a	2	2	2	4	4	4	3	3	2	5	8	s	s	s	s	s
8490/00	M. bovis	Bovis	3	2	4	2	4	3	2	5	4	4	2	1	4	3	5	s	s	s	s	r
8522/00	M. caprae	Caprae	2	2	4	6	4	5	3	4	5	4	1	2	5	1	2	s	s	s	s	s
8577/03	МТБ	URAL	1	3	2	7	2	2	3	5	4	4	3	3	2	3	6	S	S	S	S	S
8583/04	МТБ	S	3	2	3	3	3	2	3	4	4	2	3	2	5	1	7	?	?	?	?	?
8668/99	M. microti	llama	2	2	5	5	4	1	3	5	9	2	2	3	9	3	9	?	?	?	?	?
8750/03	МТБ	Haarlem	5	2	2	6	3	3	2	4	2	4	3	3	4	3	5	s	S	S	s	s
8753/00	M. microti		2	2	6	5	6	1	3	5	9	4	2	3	9	3	9	S	S	S	S	S
8870/03	МТБ	NEW-1	4	3	2	2	2	3	2	4	3	2	3	2	2	5	7	r	r	S	S	S
8885/03	МТБ	LAM	4	1	2	3	2	3	4	4	2	1	2	2	3	3	8	S	S	S	S	S
3003/03	171111			1	_	J	_	5		<u>'</u>	_	1				5		U	U	U	U	J

8915/03	МТБ	EAI	2	2	5	4	3	4	1	4	4	2	2	1	8	a	7	S	S	S	S	S
8986/99	M. caprae	Caprae	5	2	4	6	3	4	3	6	5	4	1	2	4	1	2	s	S	S	S	S
9062/01	M. caprae	Caprae	4	2	3	4	3	5	2	3	4	4	1	3	5	2	3	s	S	S	S	S
9267/01	МТБ	EAI	2	2	5	4	3	4	1	4	4	2	2	1	9	a	7	?	?	?	?	?
9398/01	МТБ	Delhi/CAS	7	3	2	5	4	5	5	2	4	2	2	4	2	4	8	s	S	S	S	S
9400/02	МТБ	Haarlem	5	4	2	5	3	3	2	3	3	4	3	3	6	3	7	?	?	?	?	?
946/03	МТБ	LAM	5	1	2	3	1	3	1	4	2	1	3	2	2	3	4	S	S	S	S	S
947/01	МТБ	EAI	2	2	4	4	3	6	2	4	a	2	4	1	8	4	6	S	S	S	S	S
951/01	M. bovis	Bovis	5	2	5	2	3	3	2	5	7	4	3	1	4	4	2	s	S	S	S	r
9532/03	МТБ	Haarlem	5	3	2	5	3	3	2	3	3	4	3	3	3	3	3	s	S	S	S	S
9564/00	M. bovis	Bovis	6	2	3	2	2	2	2	5	7	4	2	1	4	3	4	s	S	S	S	r
9577/99	M. caprae	Caprae	5	2	3	6	4	5	4	5	6	4	1	3	7	3	3	s	S	S	S	S
9679/00	МТБ	H37Rv	3	1	*	3	2	3	2	4	3	2	5	2	5	2	5	s	S	S	S	S
9787/04	МТБ	X	5	5	2	4	3	3	2	3	3	4	6	3	4	4	8	S	S	S	S	S
9915/01	МТБ	Delhi/CAS	7	3	2	5	4	5	5	2	4	2	2	4	2	4	8	r	S	S	S	S
9953/04	МТБ	X	5	2	2	4	3	3	2	4	3	4	4	3	2	4	9	S	S	S	S	S

Примечание — S — чувствительные; R — устойчивые; *МТБ — M.tuberculosis;* «а» — могут образовываться крупные фрагменты, число повторов в которых больше, чем указано в таблице 5; INH — изониазид; SM — стрептомицин; EMB — этамбутол; RMP — рифампицин; PZA — пиразинамид

ПЕРЕЧЕНЬ ВОЗМОЖНЫХ ОСЛОЖНЕНИЙ ИЛИ ОШИБОК ПРИ ВЫПОЛНЕНИИ И ПУТИ ИХ УСТРАНЕНИЯ

1. При проведении электрофореза в агарозном геле могут отсутствовать ПЦР продукты

Отсутствие ПЦР-продуктов, выявляемое процессе постановки горизонтального электрофореза в агарозном геле, свидетельствует о нарушении техники приготовления реакционной смеси и может быть связано с отсутствием одного из ингредиентов в ПЦР-реакции: дНТФ, MgCl₂, буфера, праймеров/зондов, Таq-полимеразы, что требует повторной постановки ПЦР. Если отсутствуют фрагменты во всех реакционных смесях, то это может быть связано с нарушением выделения ДНК, что требует повторного выделения ДНК и постановки ПЦР для генотипирования. Отсутствие ПЦР-продуктов может быть связано с тем, что не был добавлен раствор этидия бромида в агарозный гель для окрашивания фрагментов ДНК. В таком случае в процессе просматривания геля в трансиллюминаторе отсутствуют фрагменты стандартного маркера молекулярного веса. Для устранения этой проблемы необходимо дополнительно прокрасить гель в растворе этидия бромида (гель погружают в раствор (0,5 мкг/мл) на 60 мин).

2. Невозможно идентифицировать генотип *M. tuberculosis* в связи с несовпадением профиля VNTR-повторов у идентифицируемого штамма с базой профилей VNTR-повторов известных генотипов

Вследствие генетических перестроек *М. tuberculosis* у них могут формироваться новые комбинации профилей VNTR-повторов, что затрудняет идентификацию с используемой базой профилей для известных генотипов.

В таких случаях для идентификации генотипов должен быть использован сервер базы данных VNTR-профилей *M. tuberculosis* различных генотипов — http://www.miru-vntrplus.org. Для сложных форм анализа на сервере http://www.miru-vntrplus.org. Для сложных форм анализа на сервере

<u>vntrplus.org</u> задают количество VNTR локусов — 15, а также последовательность их расположения.

Количество повторов в каждом локусе вводят в окно информации об идентифицируемом штамме (рисунок 1), после чего идентификацию генотипа проводят с использованием построения филогенетических деревьев, в результате чего штамм кластрируется в определенную генетическую группу, даже если его числовой код полностью не совпадает с базой кодов генотипов.

MIRU-VNTR / Spoligo	Regions of Difference / SNP / Susceptibility
Strain Information	
ID: MTB-18279 Lineage:	Species: M.tuberculosis Country of isolation: Belarus
User Data 1: Slizen	User Data 2: User Data 3:
MIRU:	
580 / 2 802 / 3 MIRU40 3	2996 / 5 960 / 3 1644 / 3 3192 / 5 MIRU10 3 MIRU16 3 MIRU31 5
2165 / 4 577 / 4 ETRC 4	424 / 4 4156 / 2 3690 / 3 2401 / 4 Mtub30 4
2163b / 6 4052 / 7 QUB11b	1955 / Mtub21 5
Double alleles consist of two alleles (two a	1, 12, or CDC notation: 0-9, a-w; s,
Spoligo:	Enter the Spoligo data in one of these forms: • Binary: 43 digits 0 or 1 • Binary, o/n: 43 character, o (absence of spacer) or n (presence of spacer) • Octaspoligotype: 15 digits ranging from 0-7
	ITRPlus service is NOT stored permanently except for new MIRU-VNTR patterns (expanding MLVA MtbC15-9 (privacy statement). See our policy.

Рисунок 1 — Информацию о количестве повторов для идентифицируемого штамма вводят в окно информации о штамме и проводят идентификацию путем сравнения с базой данных генотипов

Для примера на рисунке 2 приведен изолят *M. tuberculosis*, который не идентифицирован методом визуального сравнения с базой данных о количестве MIRU-VNTR повторов, приведенной в таблице 6. Согласно построенной дендрограмме генотипируемый изолят *M. tuberculosis* схож с генотипом Haarlem и может быть идентифицирован как генотип Haarlem.

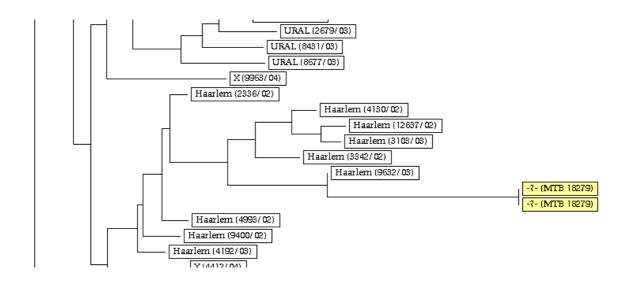


Рисунок 2 — В случае расхождения профиля штамма с базой генотипов проводят идентификацию с помощью филогенетических деревьев, в результате чего можно определить генотип идентифицируемого штамма

Использование построения филогенетических деревьев позволяет идентифицировать штаммы, профили которых полностью не совпадают с профилями базы данных генотипов.

МЕРы БЕЗОПАСНОСТИ

Первичная обработка клинического материала (мокрота, чистые культуры M. tuberculosis) должна проводиться в лабораториях, оснащенных в соответствии с требованиями инфекционного контроля биобезопасности: И обязательно использование вытяжного шкафа, боксов биологической безопасности 2 класса, респираторов, перчаток, медицинских халатов в соответствии с санитарноэпидемиологическими требованиями к устройству, оборудованию и содержанию противотуберкулезных организаций здравоохранения и к проведению санитарномероприятий, противоэпидемических направленных на предотвращение туберкулеза противотуберкулезных распространения организациях здравоохранения (постановление МЗ РБ № 58 от 28.06.2013 и Руководство по лабораторной диагностике туберкулеза (приказ №377 МЗ РБ от 22.03.2013)).