МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Заместитель Министра
здравоохранения—
Главный тосударственный

санитариый врач. Республики Беларусь

Н.П. Жукова

« 22 2018 г. Регистранионный № 004-0618

МЕТОД ГИГИЕНИЧЕСКОЙ ОЦЕНКИ СОДЕРЖАНИЯ ПОЛИАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В ПИЩЕВОЙ ПРОДУКЦИИ

Инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: республиканское

унитарное

предприятие «Научно-практический центр гигиены»

АВТОРЫ: Долгина Н.А., кандидат медицинских наук, доцент Федоренко Е.В.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Заместитель министра —
Главный государственный санитарный врач
Республики Беларусь

_____ Н. П. Жукова
22.06.2018
Регистрационный № 004-0618

МЕТОД ГИГИЕНИЧЕСКОЙ ОЦЕНКИ СОДЕРЖАНИЯ ПОЛИАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В ПИЩЕВОЙ ПРОДУКЦИИ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: РУП «Научно-практический центр гигиены»

АВТОРЫ: Н. А. Долгина, канд. мед. наук, доц. Е. В. Федоренко

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция по применению (далее — инструкция) описывает метод гигиенической оценки содержания полиароматических углеводородов (ПАУ) в пищевой продукции, которые обладают канцерогенными свойствами (далее — метод гигиенической оценки ПАУ в пищевой продукции). Данный метод может быть использован в комплексе медицинских услуг, направленных на первичную медицинскую профилактику онкологических заболеваний за счет снижения поступления указанных веществ с рационами.

Инструкция предназначена для специалистов организаций здравоохранения, осуществляющих государственный санитарный надзор, научных медицинских организаций, государственных учреждений образования, проводящих подготовку специалистов с высшим медицинским образованием.

Метод, изложенный в настоящей инструкции, может быть использован с целью:

- гигиенической оценки уровней контаминации пищевой продукции ПАУ;
- оценки поступления ПАУ с рационами;
- оценки риска для здоровья, обусловленного контаминацией пищевой продукции ПАУ;
 - ранжирования групп пищевой продукции и исследуемых отдельных ПАУ; государственного санитарно-эпидемиологического нормирования,
- обоснования мер по управлению риском, ассоциированным с контаминацией пищевой продукции ПАУ.

2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

- В настоящей инструкции используются следующие термины и их определения:
- предел обнаружения (ПО) наименьший уровень химического вещества, по которому можно с приемлемой статистической значимостью сделать вывод о его наличии в пищевой продукции. Представляет собой наименьшую концентрацию изучаемого вещества, которую данная аналитическая процедура позволяет надежно отличить от фонового «шума»;
- предел количественного определения (ПКО) наименьший измеренный уровень, по которому можно определить количество анализируемого вещества с приемлемым уровнем правильности и точности. Нижний предел количественного определения обозначается как минимальная калибровочная концентрация в рабочем диапазоне;
- бенз(а)пиреновый эквивалент (БЭ) единый интегральный показатель, позволяющий оценить канцеро- и мутагенные свойства смеси ПАУ относительно бенз(а)пирена (БП).

3. СУЩНОСТЬ МЕТОДА

Метод гигиенической оценки ПАУ в пищевой продукции включает следующие этапы:

1. Количественное определение ПАУ в отдельных группах пищевых продуктов.

- 2. Гигиеническая оценка уровней контаминации ПАУ:
- оценка фактических уровней контаминации индивидуальными ПАУ и их суммой;
 - оценка доли низкоконтаминированных проб;
- моделирование уровней контаминации ПАУ с учетом низконтаминированных проб;
- 3. Интегральная оценка уровней контаминации пищевой продукции отдельными ПАУ с использованием токсических эквивалентов.

3.1. КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ПАУ В ОТДЕЛЬНЫХ ГРУППАХ ПИЩЕВЫХ ПРОДУКТОВ

При анализе уровней контаминации проводят количественное определение приоритетных ПАУ, обладающих канцерогенными свойствами, в пищевой продукции согласно приложению 1 к настоящей инструкции.

Количественное определение индивидуальных ПАУ проводится согласно ГОСТ 31745-2012 «Продукты пищевые. Определение содержания полициклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии» или иному стандарту, утвержденному в Республике Беларусь в соответствии с законодательством.

При использовании методов определения ПАУ в лаборатории проводится валидация, направленная на достижение максимально низких уровней ПО и ПКО.

3.2. ГИГИЕНИЧЕСКАЯ ОЦЕНКА УРОВНЕЙ КОНТАМИНАЦИИ ПАУ

3.2.1. ОЦЕНКА ФАКТИЧЕСКИХ УРОВНЕЙ КОНТАМИНАЦИИ ОТДЕЛЬНЫМИ ПАУ И ИХ СУММОЙ

Оценка фактических уровней контаминации отдельных проб ПАУ пищевой продукции выполняется:

- для БП индивидуально;
- для суммы 4ПАУ (суммируются значения БП, бенз(а)антрацена, бенз(b)флуорантена, хризена).

Критерии оценки уровней контаминации отдельными ПАУ приведены в приложении 2 к настоящей инструкции.

3.2.2. ОЦЕНКА ДОЛИ НИЗКОКОНТАМИНИРОВАННЫХ ПРОБ

Оценка доли низконтаминированных ПАУ проб пищевой продукции выполняется по формуле 1:

$$\omega = \frac{N_{\text{HK}}}{N_{\text{oбщ}}} \times 100 \% \tag{1}$$

где *w* — доля низкоконтаминированных проб (%);

 $N_{\mbox{\tiny HK}}$ — количество проб ниже ПКО или ПО для отдельного вида исследованного пищевого продукта;

 $N_{\text{общ}}$ — общее количество исследованных проб отдельного вида пищевой продукции.

3.2.3. МОДЕЛИРОВАНИЕ УРОВНЕЙ КОНТАМИНАЦИИ НИЗКОКОНТАМИНИРОВАННЫХ ПРОБ

Моделирование применяется при доле низкоконтаминированных проб пищевой продукции более 60 %. В остальных случаях незначимые значения уровней контаминации приравниваются к 0.

При моделировании количественной характеристики проб устанавливаются диапазоны, включающие нижнюю и верхнюю границы, а также средний уровень. При этом для низкоконтаминированных проб используются замещающие значения согласно таблице.

Таблица — Модели количественной характеристики оценки проб ниже ПО или ниже ПКО*

Рид ополен	Замещающие значения для незначимых результатов			
Вид оценки	для результатов ниже ПО	для результатов ниже ПКО		
Нижняя граница	0	ПО		
Средний уровень	1/2 ПО	(ПО+ПКО)/2		
Верхняя граница	ПО	ПКО		
* Указанный по	дход может использоваться для	иных веществ, содержащихся в		
пищевой продукции.				

Количественные значения уровней контаминации ПАУ пищевой продукции обрабатываются параметрическими или непараметрическими статистическими методами в зависимости от характера их распределения.

3.3. ИНТЕГРАЛЬНАЯ ОЦЕНКА УРОВНЕЙ КОНТАМИНАЦИИ ПИЩЕВОЙ ПРОДУКЦИИ ОТДЕЛЬНЫМИ ПАУ С ИСПОЛЬЗОВАНИЕМ ТОКСИЧЕСКИХ ЭКВИВАЛЕНТОВ

Степень канцеро- и мутагенной активности отдельных ПАУ различна и оценивается с использованием факторов канцеро- и мутагенной эквивалентности (ТЭФ и МЭФ соответственно).

Среди ПАУ БП обладает наиболее высокой степенью канцерогенной и мутагенной активности. Значения ТЭФ и МЭФ для отдельных конгенеров ПАУ приведены в приложении 3 к настоящей инструкции.

Интегральная оценка уровней контаминации смесью ПАУ проводится с использованием значений токсического и мутагенного эквивалентов.

Расчет токсического эквивалента проводится по формуле 2:

_

 $^{^{1}}$ Низкоконтаминированные пробы — пробы пищевой продукции, в которых количественное содержание контаминантов квалифицируется как «ниже $\Pi O / \Pi KO$ » или «не обнаружено».

$$T\mathfrak{I}_{\mathsf{B}\mathsf{\Pi}} = \sum_{i=1}^{n} \mathsf{C}_{\mathsf{i}} \, \mathsf{x} \mathsf{T} \mathfrak{I} \Phi_{\mathsf{i}} \tag{2}$$

где ТЭБП — токсический эквивалент для смеси ПАУ (мкг/кг);

 C_i — концентрация отдельных конгенеров ПАУ в пищевом продукте (мкг/кг); ТЭФ — токсический эквивалентный фактор для индивидуального ПАУ.

Мутагенный эквивалент рассчитывается по следующей формуле 3:

$$M\mathfrak{I}_{\mathsf{B}\mathsf{\Pi}} = \sum_{i=1}^{n} \mathsf{C}_{\mathsf{i}} \, \mathsf{x} \mathsf{M} \mathfrak{I} \Phi_{\mathsf{i}} \tag{3}$$

где $MЭ_{Б\Pi}$ — мутагенный эквивалент для смеси $\Pi AУ$ (мкг/кг);

 C_i — концентрация отдельных конгенеров ПАУ в пищевом продукте (мкг/кг); МЭФ — мутагенный эквивалентный фактор для индивидуального ПАУ.

Количественные значения уровней контаминации ПАУ пищевой продукции обрабатываются параметрическими или непараметрическими статистическими методами в зависимости от характера их распределения.

Интегральная оценка уровней контаминации используется для приведения суммарного уровня загрязнения смесью ПАУ к наиболее опасному соединению — БП.

Список канцерогенных конгенеров ПАУ²

Наименование ПАУ	Приоритет
Бенз(а)пирен	Высокий
Бенз(а)антрацен	Средний
Бенз(b)флуорантен	Средний
Хризен	Средний
Антрацен	Низкий
Аценафтен	Низкий
Аценафтилен	Низкий
Бенз(b)хризен	Низкий
Бенз(k)флуорантен	Низкий
Бенз(g, h, i)перилен	Низкий
Бенз(j)флуорантен	Низкий
Дибенз(ah)антрацен	Низкий
Дибенз $[a,h]$ пирен	Низкий
Дибенз $[a,i]$ пирен	Низкий
Дибенз $[a,l]$ пирен	Низкий
Дибенз $[a,e]$ пирен	Низкий
Индено(1, 2, 3-cd)пирен	Низкий
Нафталин	Низкий
5-метил-хризен	Низкий
Пирен	Низкий
Фенантрен	Низкий
Флуорантен	Низкий
Флуорен	Низкий
Циклопента $[cd]$ пирен	Низкий

_

 $^{^2}$ При оценке уровня приоритетности необходимо проводить оценку имеющихся научных данных, характеризующих степень токсичности, частоту обнаружений и уровни контаминации отдельными соединениями.

Критерии оценки уровней контаминации отдельными ПАУ

Максимальный допустимый ур				
Dur Humanaka Haa Huma	(мкг/кг)			
Вид пищевого продукта	БП		Сумма 4ПАУ	
	PБ ^{3,4}	EC^5	EC^5	
Масложировая продукция	1,0	2,0	10,0	
(за исключением какао-масла)				
Какао-бобы и продукты их	-	5,0	30,0	
переработки				
Кокосовое масло	-	2,0	20,0	
Копченые мясо и мясопродукты	1,0	2,0	12,0	
Копченые сыры, сырные продукты	1,0	-	1	
Зерно продовольственное	1,0	-	-	
Мускульная ткань копченого мяса,	5,0	2,0	12,0	
рыбы и копченых продуктов				
рыболовства				
Шпроты и консервы из копченых	5,0	5,0	30,0	
шпрот (Sprattus Sprattus);				
двустворчатые моллюски (свежие,				
охлажденные или замороженные)				
Двустворчатые моллюски	-	6,0	35,0	
(копченые)				
Детское питание на зерновой и	Не	1,0	1,0	
молочной основе,	допускается			
специализированные пищевые	(<0,2 мкг/кг)			
продукты для питания детей раннего				
возраста				

 $^{^3}$ Показатели безопасности и безвредности для человека продовольственного сырья и пищевых продуктов : гигиен. норматив : утв. постановлением М-ва здравоохранения Респ. Беларусь от 21.06.2013 № 52 / Респ. центр гигиены, эпидемиологии и общественного здоровья. — 2013.

 $^{^4}$ Технический регламент Таможенного союза 021/2011 «О безопасности пищевой продукции», утв. Решением Комиссии Таможенного союза от 09.12.2011 № 880.

 $^{^{5}}$ Постановление Комиссии (EC) № 835/2011 от 19.08.2011, вносящее изменения в Регламент комиссии (EC) № 1881/2006 о максимально допустимых уровнях для полициклических ароматических углеводородов в пищевых продуктах.

Токсические и мутагенные эквивалентные факторы для отдельных конгенеров ПАУ (US EPA, 1993; Durant et al., 1996)

поштеперов	Kom enchos 11715 (OS E171, 1775, Burant et al., 1776)						
Наименование соединения	ТЭФ	МЭФ					
Дибенз(a, h)антрацен	5^6	0,29					
Бенз(а)пирен	1	1					
Бенз(а)антрацен	0,1	0,082					
Бенз(b)флуорантен	0,1	0,25					
Бенз(к)флуорантен	0,1	0,11					
Индено (1, 2, 3-с, d)пирен	0,1	0,31					
Антрацен	0,01	1					
Бенз(ghi)перилен	0,01	0,19					
Хризен	0,01	0,017					
Аценафтен	0,001	1					
Аценафтилен	0,001	1					
Флуорантен	0,001	1					
Флуорен	0,001	-					
2-метилнафтален	0,001	-					
Нафтален	0,001	-					
Фенантрен	0,001	-					
Пирен	0,001	-					

⁶ Для низкоуровневого воздействия на окружающую среду.