МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Заместитель
Министра здравоохранения Главный государственный
санитарный врач
Республики Беларусь

«30» ©8 2016 г. Н.П. Жукова

Регистрационный № 001 - 01/6

ВЫЯВЛЕНИЕ И ИДЕНТИФИКАЦИЯ БАКТЕРИЙ *LISTERIA*MONOCYTOGENES В ОБЪЕКТАХ СРЕДЫ ТЕХНОЛОГИЧЕСКОГО ОКРУЖЕНИЯ ПИЩЕВЫХ ПРОИЗВОДСТВ

Инструкция по применению

Учреждения-разработчики: Государственное учреждение образования «Белорусская медицинская академия последипломного образования», Республиканское унитарное предприятие «Научнопрактический центр гигиены», Государственное учреждение «Республиканский центр гигиены, эпидемиологии и общественного здоровья», Государственное учреждение «Минский городской центр гигиены и эпидемиологии».

Авторы: к.м.н., доцент Тонко О.В., к.м.н., доцент Федоренко Е.В., д.м.н., профессор Коломиец Н.Д., к.б.н., доцент Дудчик Н.В., к.м.н. Ханенко О.Н., Левшина Н.Н., Филипенок С.С., Марейко А.М.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ Заместитель министра – Главный государственный санитарный врач Республики Беларусь

______Н.П. Жукова 30.08 2016 Регистрационный № 001-0116

ВЫЯВЛЕНИЕ И ИДЕНТИФИКАЦИЯ БАКТЕРИЙ LISTERIA MONOCYTOGENES В ОБЪЕКТАХ СРЕДЫ ТЕХНОЛОГИЧЕСКОГО ОКРУЖЕНИЯ ПИЩЕВЫХ ПРОИЗВОДСТВ

инструкция по применению

УЧРЕЖДЕНИЯ-РАЗРАБОТЧИКИ: ГУО «Белорусская медицинская академия последипломного образования», РУП «Научно-практический центр гигиены», ГУ «Республиканский центр гигиены, эпидемиологии и общественного здоровья», ГУ «Минский городской центр гигиены и эпидемиологии»

АВТОРЫ: канд. мед. наук, доц. О.В. Тонко, канд. мед. наук, доц. Е.В. Федоренко, д-р мед. наук, проф. Н.Д. Коломиец, к.б.н., доц. Н.В. Дудчик, канд. мед. наук О.Н. Ханенко, Н.Н. Левшина, С.С. Филипенок, А.М. Марейко

ГЛАВА 1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция по применению «Выявление и идентификация бактерий Listeria monocytogenes в объектах среды технологического окружения пищевых производств» (далее — инструкция) устанавливает метод выявления бактерий Listeria monocytogenes с поверхностей, контактирующих с пищевой продукцией при ее производстве, который может быть использован в комплексе медицинских услуг, направленных на медицинскую профилактику заболеваний, связанных с пищевым путем передачи.

Инструкция предназначена для врачей-бактериологов, врачейэпидемиологов, иных специалистов организаций здравоохранения, осуществляющих государственный санитарный надзор, и иных организаций, проводящих бактериологические исследования с целью выявления бактерий Listeria monocytogenes.

ГЛАВА 2. УСЛОВИЯ ВЫПОЛНЕНИЯ ИСПЫТАНИЙ

- 1. При выполнении испытаний в лаборатории следует руководствоваться общими требованиями и рекомендациями согласно ГОСТ ISO 7218.
- 2. В помещениях для проведения исследований должны быть соблюдены следующие условия:
 - температура воздуха при выполнении измерений (18–27)°С;
 - относительная влажность воздуха не более 80% при температуре 25°C.

ГЛАВА 3. ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ, РЕАКТИВОВ, СРЕДСТВ, ИЗДЕЛИЙ МЕДИЦИНСКОЙ ТЕХНИКИ

1. Для выявления бактерий *Listeria monocytogenes* с поверхностей, контактирующих с пищевой продукцией при ее производстве, используются медицинские изделия, оборудование, лабораторная посуда и материалы:

Анализатор потенциометрический, ГОСТ 19881-74

погрешность измерений pH±0,1

(рН-метр)

Баня водяная с ГОСТ 12026-76

терморегулятором, позволяющая поддерживать температуру (45±1)°С

Весы лабораторные ГОСТ 24104-2001

Дистиллятор электрический

Лупа с пятикратным ГОСТ 25706-83

увеличением

Стерилизатор паровой с рабочим давлением пара не более $0,22~\mathrm{M\Pi a}~(2,2~\mathrm{кгc/cm}^2)$

Стерилизатор суховоздушный для температурного режима (180±5)°С Термометр ртутный ΓOCT 24498-90 диапазоном измерения от 0 до 100°С с ценой деления шкалы 1°С Термостат электрический суховоздушный, ±1°С ГОСТ 16317-87 Холодильник бытовой Электроплитка бытовая ГОСТ 14919-83 ΓOCT 5556-81 Вата медицинская гигроскопичная Марля медицинская ГОСТ 9412-93 ΓΟCT 25336-82 Колбы плоскодонные конические или круглые разной вместимости ТУ Системы для взятия смывов 8195-012-44881728-2011 (зонд-тампон, губка) Ножницы ΓOCT 21241-89 ΓOCT 25336-82 Пробирки бактериологические типов П1 и П2 Спиртовки лабораторные ΓOCT 23932-90E стеклянные Чашки ГОСТ 23932-90Е биологические (Петри) Штативы для пробирок Перчатки медицинские стерильные Автоматические дозаторы переменным объемом дозирования (от 5 до 20 мм^3 с шагом 0,01 мм³, с точностью $\pm 0,8\%$ и от 20 до 200 мм³ с шагом $0,1 \text{ мм}^3$, с точностью $\pm 0,6\%$) Аппарат для встряхивания пробирок, скорость вращения 250-3000 мин⁻¹ Аппарат универсальный встряхивания жидкости в колбах и пробирках (или другая аппаратура для встряхивания) Бокс абактериальной воздушной среды (ПЦР-бокс) или ламинарный шкаф класса биологической безопасности II, тип А

отсасыватель

Вакуумный

медицинский с колбой-ловушкой для удаления надосадочной жидкости

Компьютер, совместимый с программным обеспечением амплификатора/детектора, в комплекте с монитором, клавиатурой, мышью, кабелем, компакт-дисками с информацией по эксплуатации и инструкциями по настройке прибора

Микроцентрифуга настольная типа эппендорф (частота вращения не менее 13000 мин^{-1})

Облучатель бактерицидный настенный

Холодильник от 2 до 8°C с морозильной камерой не выше -16°C для хранения выделенных проб ДНК

Центрифуга, обеспечивающая 20000хg

Часы механические сигнальные

При детекции FRT — в режиме реального времени:

программируемый амплификатор с системой детекции флуоресцентного сигнала в режиме реального времени

одноразовые пробирки для ПЦР в режиме реального времени:

- на 0,2 см³ (плоская крышка, нестрипованные, для постановки в ротор на 36 пробирок) для приборов с детекцией через дно пробирки
- на 0,2 см³ (куполообразная крышка, для приборов с детекцией через крышку)

Контейнер для сброса наконечников

Контейнеры стерильные из полимерных материалов с крышками для отбора образцов

Наконечники одноразовые с фильтром для дозаторов с

ΓΟCT 26678-85

ГОСТ 3145-84

переменным объемом дозирования от 5 до 20; от 20 до 200; от 200 до 1000 мм³; до 10 см³

Ножницы медицинские

Одноразовые халаты, шапочки, маски, обувь или бахилы, одноразовые перчатки резиновые или латексные неопудренные

Оптически прозрачные крышки для ПЦР-пробирок

Стандарт-титры для приготовления образцовых буферных растворов для рН-метрии

Реагенты для проведения ПЦР Комплект реагентов (набор) для выделения

ДНК из исследуемого материала

Комплект реагентов (набор) для выделения ДНК/РНК из исследуемого материала

Комплекты реагентов (наборы) для проведения ПЦР с гибридизационно-флуоресцентной детекцией, обеспечивающие аналитическую чувствительность на уровне 1×10^3 ГЭ/см 3 в отношении выявляемых фрагментов ДНК

Listeria monocytogenes, содержащие:

- смеси олигонуклеотидных праймеров на участки ДНК бактерий и флуоресцентномеченных олигонуклеотидных зондов, комплементарных участкам амплифицируемых ДНК-мишеней;
 - полимеразу (TaqF);
- смесь буфера и нуклеозидтрифосфатов;
 - ДНК-буфер;
- положительные контрольные образцы этапа ПЦР со специфическими фрагментами ДНК

ΓOCT 21239-89

ГОСТ 8.135-2004 ГСИ

ТУ 9398-003-01897593-2009 или аналогичный по техническим

ТУ 9398-071-01897593-2008 или аналогичный по техническим характеристикам ФС 42-186BC-88 искомых микроорганизмов и внутренним контрольным образцом;

- отрицательный контрольный образец и внутренний неконкурентный контрольный образец этапа выделения;

минеральное масло для ПЦР силика магнитная в растворе для автоматизированной экстракции ДНК;

- буфер лизирующий для автоматизированной экстракции ДНК;
- буфер для экстракции 1 для автоматизированной экстракции ДНК;
- буфер для экстракции 2 для автоматизированной экстракции ДНК;
- буфер для экстракции 3 для автоматизированной экстракции ДНК.
- 2. Допускается применение оборудования и материалов с аналогичными по назначению техническими и метрологическими характеристиками, а также использование других коммерческих питательных сред и диагностических аналогичного проведения препаратов назначения ДЛЯ исследований При их соответствии с данным документом. применении рекомендациями изготовителя. Питательные руководствоваться среды биологические препараты импортного производства должны международный сертификат качества ИСО 9000 или EN 29000; питательные среды и препараты отечественного производства должны вырабатываться по нормативной документации, утвержденной в установленном порядке.

ГЛАВА 4. ПИТАТЕЛЬНЫЕ СРЕДЫ И РЕАКТИВЫ

- 1. Для приготовления растворов реактивов и питательных сред используют дистиллированную воду, если нет специальных указаний, и реактивы квалификации «х.ч.» или «ч.д.а.».
- 2. Необходимое значение водородного показателя рН (далее рН) растворов и питательных сред устанавливают с помощью раствора гидроокиси натрия массовой концентрацией 0,1 моль/дм³ или раствора кислоты соляной объемной долей 0,1 моль/дм³; рН растворов и питательных сред определяют с помощью рН-метра. Ориентировочное определение рН растворов и питательных сред допускается проводить с помощью индикаторной бумаги.

3. Среды для взятия смывов. В легкодоступных точках отбора проб, которые берутся в процессе производства продуктов, для увлажнения основания тампона и взятия смывов с оборудования должны быть использованы среды для взятия смывов, не содержащие нейтрализатор.

Рекомендуемые среды: пептонная вода в концентрации от 1 г/л, физиологический раствор пептона или раствор Рингера, разлитые в пробирки или флаконы и простерилизованные в течение 15 мин при температуре 121°C.

Фосфатный буферный раствор применять не рекомендуется.

Бульон Фразера не следует использовать вместо сред для взятия смывов, так как он может способствовать росту *Listeria monocytogenes* в месте обработки.

В любых точках отбора, где возможны остаточные количества дезинфицирующих средств, ИЛИ когда пробы отбирают сразу дезинфекции, следует использовать нейтрализующие среды для увлажнения основания тампона и взятия смывов с оборудования.

Для нейтрализации остаточного количества дезинфицирующих средств используется нейтрализующий бульон с компонентами:

- полисорбат 80 (30 г/л);
- лецитин (3 г/л);
- тиосульфат натрия (5 г/л);
- L-гистидин (1 г/л);
- сапонин (30 г/л);
- пептон (1 г/л);
- хлорид натрия (8,5 г/л).

Нейтрализатор разливается во флаконы и стерилизуется в течение 15 мин при 121°С.

4. Селективные обогащения. среды первичного Для первичного используется полуконцентрированный бульон Фразера. Исследуемую пробу X (см³ или г) вносят в среду, исходя из соотношения пробы и среды 1:9. Приготовление сред проводится в соответствии с ГОСТ 32031-2012 «Продукты пищевые. Методы бактерий Listeria выявления monocytogenes».

ГЛАВА 5. ВЫБОР ТОЧЕК ДЛЯ ОТБОРА ПРОБ

1. Отбор проб осуществляется с поверхностей, контактирующих с пищевой продукцией при ее производстве, где пищевой продукт подвергается риску загрязнения.

Отбор проб может осуществляться с поверхностей, не контактирующих с готовой пищевой продукцией, с целью изучения циркуляции патогенных микроорганизмов на производстве.

Выбор места отбора проб проводится каждым предприятием после исследования особенностей технологического процесса и анализа предшествующих данных о мониторинге циркуляции патогенных микроорганизмов на производстве.

- 2. Примерный перечень мест для отбора проб:
- поверхности, не контактирующие с пищевыми продуктами: водостоки, полы, бассейны воды на полу, чистящие инструменты, моечные, весовое оборудование в пол, шланги, полые ролики для конвейеров, конвейеры, рамочное оборудование, внутренняя панель оборудования, капли конденсата, вилочные погрузчики, ручные тележки, тележки, колеса тележек, мусорные баки, морозильные камеры, льдогенераторы, охлаждающие пластины в конденсаторах, фартуки, стены, потолки, холодные места, где вода конденсируется как влага на стенах или вокруг труб и охлаждающих устройств, резиновые уплотнители вокруг дверей, особенно в охладителях (кулерах), содержимое пылесосов, дверные ручки и краны;
- поверхности, контактирующие с пищевыми продуктами: столы, ленты конвейера, ножи, разделочные доски, измельчители, блендеры, оборудование для розлива и упаковки, контейнеры, емкости, ванны, тележки, внутренняя поверхность трубопроводов, краны и другие выпускные отверстия, руки работников, другие предметы, например, многоразовые перчатки.

ГЛАВА 6. ПЛОЩАДЬ, ПОДЛЕЖАЩАЯ ОТБОРУ

1. Для поверхностей, контактирующих с готовыми к употреблению пищевыми продуктами, площадь смыва составляет не менее 500 см² (в целом) и не менее 5 объектов (ножи, краны, емкости, руки работников и объекты, непосредственно контактирующие с готовыми к употреблению пищевыми продуктами или руками работников в процессе производства пищевых продуктов).

Для определения патогенных микроорганизмов с целью мониторинга циркуляции Listeria monocytogenes рекомендуется исследовать площадь от 1000 до 3000 см².

- 2. Зонд-тампон следует использовать для отбора проб в труднодоступных и небольших участках (например, внутри полых роликов, корпуса двигателя).
- 3. Губки следует использовать для отбора проб с больших площадей. В сравнении с зонд-тампонами губками можно более энергично протереть поверхности, и они имеют лучшую поглощающую способность.
- 4. Не рекомендуется использовать многоразовые шаблоны или другие специальные приспособления, поскольку они могут быть источниками контаминации и (или) их дезинфекция может помешать испытанию. Однако площадь, подлежащая отбору, должна быть известна, так, можно учитывать, что длина предплечья, от кончика среднего пальца до локтя, составляет около 45 см, а расстояние между кончиком большого пальца и мизинцем примерно 20 см, когда пальцы расправлены.

Размер площади, подлежащей отбору, должен быть постоянным для того, чтобы можно было оценивать тенденции результатов мониторинга в динамике.

ГЛАВА 7. ПОДГОТОВКА МЕДИЦИНСКИХ ИЗДЕЛИЙ, ОБОРУДОВАНИЯ, ЛАБОРАТОРНОЙ ПОСУДЫ, МАТЕРИАЛОВ ДЛЯ ОТБОРА ПРОБ

1. Медицинские изделия, оборудование, лабораторная посуда и материалы микробиологической лаборатории не следует использовать в помещениях пищевых производств из-за рисков, связанных с возможной контаминацией.

Медицинские изделия, оборудование, лабораторная посуда и материалы для отбора проб с поверхностей должны храниться и обрабатываться отдельно от других лабораторных работ, особенно если в лаборатории проводят исследования на патогенную группу микроорганизмов.

- 2. Ни один из расходных элементов, используемых для отбора проб, не должен остаться в производственной зоне. С этой целью рекомендуется считать эти расходные элементы до и после отбора проб.
- 3. Система для взятия смывов в виде зонд-тампона (далее зонд-тампон) используется сухой или увлажненной.

В том случае, если поверхность отбора влажная, следует использовать сухой зонд-тампон.

В том случае, если поверхность сухая, должен использоваться увлажненный зонд-тампон.

Если смыв должен быть сделан во влажном или сухом месте, где возможны остаточные количества дезинфицирующих средств (чаще в труднодоступных местах), тампон должен быть увлажнен с помощью нейтрализующего бульона, обозначенного в п. 9 настоящей инструкции.

Увлажненные тампоны могут быть приготовлены в асептических условиях в лаборатории до начала проведения отбора образцов. Конец тампона должен слегка коснуться среды для взятия смывов, обозначенных в п. 9 настоящей Инструкции, таким образом, чтобы с тампона не стекали капли влаги. Затем тампон помещают обратно в пробирку, которая плотно закрывается так, чтобы обеспечить стерильность и поддерживать влажность.

4. Увлажненные системы для взятия смывов в виде губки (далее — губка) могут быть приготовлены в асептических условиях в лаборатории до начала отбора образцов с соответствующим и записанным объемом среды для взятия смывов, обозначенных в п. 9 настоящей инструкции, таким образом, чтобы не стекали капли влаги. После увлажнения системы для взятия смывов закрываются в пластиковый пакет таким образом, чтобы обеспечить стерильность и поддерживать влажность.

Если увлажнение губки выполняется в условиях пищевого производства, среда для взятия смывов не должна храниться в стеклянной бутылке.

ГЛАВА 8. МЕТОД ВЗЯТИЯ СМЫВОВ

Метод взятия смывов с использованием зонд-тампона.

1. Достают зонд-тампон из пробирки.

- 2. Перемещают зонд-тампон в нескольких направлениях по поверхности или внутренней стороне частей оборудования или в ином труднодоступном месте для отбора проб с усилием, достаточным для полного смачивания исследуемой поверхности или предмета, но не приводящим к разрушению зонд-тампона.
 - 3. Помещают зонд-тампон в пробирку.
- 4. Закрывают пробирку так, чтобы зонд-тампон был защищен от загрязнения и его конец оставался влажным до проведения анализа.
- 5. После отбора проб поверхность, с которой отбирались смывы зондтампоном, обрабатывают дезинфицирующим средством, разрешенным к применению в установленном порядке, с последующей промывкой поверхности водой и протиранием чистой салфеткой.

Метод взятия смывов с использованием губки.

- 6. Удаляют избыточную жидкость с поверхности, с которой будет отобран смыв (в случае, если поверхность слишком мокрая), осторожным наложением стерильной поглощающей бумаги.
 - 7. Открывают пластиковый пакет, содержащий губку.
- 8. Достают губку с соблюдением правил асептики (например, используют стерильные перчатки). В качестве альтернативы губка может быть захвачена через пластиковый пакет, если потянуть за перевернутый пакет рукой.
- 9. Протирают всю выбранную поверхность энергичным зигзагообразным движением в двух перпендикулярных направлениях, меняя стороны губки.
 - 10. Возвращают губку в пластиковый пакет.
- 11. Закрывают пластиковый пакет так, чтобы губка была защищена от загрязнения и сохранилась влажной до проведения анализа.
- 12. После отбора проб поверхность, с которой отбирались смывы губкой, обрабатывают дезинфицирующим средством, разрешенным к применению в установленном порядке, с последующей промывкой поверхности водой и протиранием чистой салфеткой.
 - 13. Места отбора проб должны быть указаны в протоколе исследования.

ГЛАВА 9. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ СМЫВОВ

- 1. Транспортировка смывов осуществляется в сумках-холодильниках.
- 2. При необходимости допускается хранить смывы в лаборатории при температуре (3±2)°С. Приступить к проведению анализа необходимо как можно быстрее, но не позднее чем через 24 ч после поступления проб в лабораторию.
- 3. Продолжительность времени до начала анализа должна быть указана в протоколе исследования.

ГЛАВА 10. ПРОВЕДЕНИЕ ИССЛЕДОВАНИЙ

При использовании зонд-тампона.

1. Добавить достаточный объем (в соответствии с п. 10, но не менее 9 мл) полуконцентрированного бульона Фразера в пробирку с зонд-тампоном так, чтобы конец тампона полностью был погружен в бульон.

2. Тщательно перемешать содержимое пробирки, содержащей зондтампон, лучше с помощью смесителя для смешивания жидкостей в пробирке в течение 30 с.

При использовании губки

- 3. Добавить в пластиковый пакет, содержащий губку, полуконцентрированный бульон Фразера в объеме, в 9 раз превышающем объем от взятого для увлажнения губки. Губка должна полностью впитать бульон.
- 4. Содержимое пластикового пакета обработать в смесителе для смешивания жидкостей в течение 1 мин.
- 5. Выявление и идентификация *Listeria monocytogenes* культуральным методом выполняются в соответствии с ГОСТ 32031-2012 «Продукты пищевые. Методы выявления бактерий *Listeria monocytogenes*».
- 6. Выявление и идентификация *Listeria monocytogenes* молекулярно-генетическим методом выполняются в соответствии с инструкцией по применению № 009-1113 «Молекулярно-генетические методы определения условно-патогенных и патогенных микроорганизмов в продовольственном сырье и пищевых продуктах», утвержденной 23.12.2013 заместителем министра здравоохранения главным государственным санитарным врачом Республики Беларусь.

ОЦЕНКА РЕЗУЛЬТАТОВ

- 1. Результаты оцениваются по каждому смыву отдельно.
- 2. Оценка соответствия результатов осуществляется путем сравнения выраженного результата с гигиеническими нормативами.